Какие витамины входят в состав коферментов над

Какие витамины входят в состав коферментов над thumbnail

Группы коферментов

Есть две группы коферментов:

— витаминные коферменты

— невитаминные коферменты.

Для витаминных коферментов исходными веществами являются витамины, поэтому недостаточное поступление их с пищей приводит к снижению синтеза этих коферментов и нарушению в работе соответствующих ферментов.

Невитаминные коферменты образуются в организме из промежуточных продуктов обмена веществ, поэтому недостатка в организме этих коферментов не бывает.

  1. Витаминные коферменты подразделяются на:

— тиаминовые коферменты (производные витамина В1);

— флавиновые коферменты (производные витамина В2);

— пантотеновые коферменты (производные витамина В3);

— пиридоксиновые коферменты (производные витамина В6);

— фолиевые коферменты (производные витамина В9);

— биотиновые коферменты (производные витамина Н);

— кобамидные коферменты (производные витамина В12);

— липоевие коферменты (производные витамина N);

— хиноновые коферменты. Убихинон или коэнзим Q10;

— карнитиновые коферменты (производные витамина Вт). Карнитин.

  1. Невитаминные коферменты также делятся на несколько групп:

— нуклеотидные коферменты;

— фосфоты моносахаридов;

— металлопорфириновые коферменты;

— Пептидные (глутатион).

Применение коферментов.

Спортивная фармакология

Изучение действия коферментов показало, что они, обладая низкой токсичностью, имеют широкий спектр действия на организм. Применение коферментов в спортивной фармакологии:

— кокарбоксилаза (коферментная форма тиамина — витамин В1),

— пиридоксальфосфат (витамин В6),

— кобамамид (витамин В12).

Группа препаратов, созданных на основе производных витаминов, представлена:

— пиридитолом (производное пиридоксина), он имеет мягкий стимулирующий эффект на ткани головного мозга,

— пантогамом (гомолог пантотеновой кислоты, содержащий гаммааминомасляную кислоту),

— оксикобаламином (метаболит витамина В12).

Кокарбоксилаза — кофермент, образующийся в организме человека из поступающего извне тиамина. В спортивной медицине применяется для лечения перенапряжения миокарда и нервной системы, при печёночном синдроме, невритах и радикулитах. Эффект даёт только внутривенное введение в дозе не менее 100 мг.

Кобамамид — обладает всеми свойствами витамина В12 и анаболической активностью. В спортивной медицине применяется для тех же целей, что и витамин В12, а также при перенапряжении миокарда, печёночном синдроме. Способствует увеличению массы скелетных мышц при интенсивных физических нагрузках, улучшению скоростно-силовых показателей и ускорению восстановительных процессов после интенсивных физических нагрузок. Целесообразно сочетание кобамамида с карнитином, с препаратами аминокислот и продуктами повышенной биологической ценности. Рекомендуется прием 2-3 таблеток ежедневно или внутримышечное введение 1000 мкг препарата в день, не менее 20 дней.

Оксикобаламин — является метаболитом цианкобаламина (витамин В12). По фармакологическому действию близок витамину В12, но по сравнению с ним быстрее превращается в организме в активную коферментную форму и дольше сохраняется в крови, так как более прочно связывается с белками плазмы и медленнее выделяется с мочой. Показания к применению такие же, как для В12.

Пиридоксальфосфат — является коферментной формой витамина В6 (пиридоксина). Препарат обладает свойствами витамина В6. Отличается тем, что оказывает быстрый терапевтический эффект, может приниматься в случаях, когда нарушено фосфорилирование пиридоксина. Рекомендуется по 0,02 г 3 раза в день через 15 мин. после еды курсом 10-30 дней. Также источником коферментной формы витамина В6 является спортивное питание «Леветон Форте».

Пиридитол, энцефабол (пиритинол) — фармакологический препарат, проявляет элементы психотропной активности, свойственной антидепрессантам, с седативным действием. Активирует метаболические процессы в ЦНС, способствует ускорению проникновения глюкозы через гематоэнцефалический барьер, снижает избыточное образование молочной кислоты, повышает устойчивость тканей к гипоксии. Малотоксичен, не обладает В6-витаминной активностью. Применяют по 0,1 г 3 раза в день через 15-30 мин. после еды не менее 4 недель. Не рекомендуется принимать в вечерние часы.

Пантогам (гомолог пантотеновой кислоты, содержащий гаммааминомасляную кислоту) — улучшает обменные процессы, повышает устойчивость к гипоксии, уменьшает реакции на болевые раздражения. Активизирует умственную деятельность и физическую работоспособность. В составе комплексной терапии применяют при черепно-мозговой травме. Рекомендуется по 0,5 г 2-3 раза в день через 15-30 мин. после еды. Приём не менее 4 недель.

Карнитин — витаминоподобное вещество, частично поступающее с пищей, частично синтезируемое в организме человека. Способствует окислению жирных кислот, синтезу аминокислот и нуклеиновых кислот. В спортивной медицине рекомендован для повышения работоспособности в видах спорта с преимущественным проявлением выносливости для ускорения течения процессов восстановления. В скоростно-силовых видах спорта оказывает стимулирующее действие на рост мышц. Выпускается как L-карнитин («Элькар», «Карнифит»).

Флавинат — кофермент, который образуется в организме из рибофлавина путём фосфорилирования при участии АМФ. Лекарственная форма получена синтетическим путём. Флавинат применяют при отсутствии эффекта от применения витамина В2. Применяют также при хронических заболеваниях печени, желудочно-кишечного тракта, кожных заболеваниях. Препарат вводят в мышцу медленно.

Липоевая кислота — положительно влияет на углеводный обмен. Ускоряет окисление углеводов и жирных кислот, способствует повышению энергетического потенциала.

Читайте также:  Какой витамин группы в для сердца

Что касается коэнзима Q10, пожалуй, самого известного из коферментов, окончательный вердикт о его пользе для атлетов ещё не вынесен.

По результатам исследований было выявлено, что у людей, не занимающихся спортом, коэнзим Q10 может улучшать качество аэробных упражнений. В то же время у опытных спортсменов, принимавших по 100 мг коэнзима Q10 на протяжении четырёх недель, никаких изменений в уровне выносливости обнаружено не было.

Важно отметить, что коэнзим Q10 в больших дозах (больше 120 мг) может быть вреден, приводит к повреждению мышечной ткани.kofermenti

Источник

Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами:

— ковалентными связями;

— ионными связями;

— гидрофобными взаимодействиями и т.д.

Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента.

Все коферменты делят на две большие группы: витаминные и невитаминные.

Коферменты витаминной природы– производные витаминов или химические модификации витаминов.

1 группа: тиаминовые – производные витамина В1. Сюда относят:

— тиаминмонофосфат (ТМФ);

— тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза;

— тиаминтрифосфат (ТТФ).

ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, a-кетоглутаровая кислота. Этот фермент катализирует отщепление СО2.

Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла.

2 группа: флавиновые коферменты, производные витамина В2. Сюда относят:

— флавинмононуклеотид (ФМН);

— флавинадениндинуклеотид (ФАД).

Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД.

[рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]

ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH2-CH2-COOH® (над стрелкой – СДГ, под – ФАД и ФАДН2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН2. Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.

3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.

4 группа: никотинамидные, производные витамина РР — никотинамида:

Представители:

— никотинамидадениндинуклеотид (НАД);

— никотинамидадениндинуклеотидфосфат (НАДФ).

Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.

Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н+]

5 группа: пиридоксиновые, производные витамина В6. [рис. пиридоксаля. Пиридоксаль+ фосфорная к-та= пиридоксальфосфат]

— пиридоксин;

— пиридоксаль;

— пиридоксамин.

Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ).

ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования. Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК.

Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма.

1) Нуклеотиды – УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза).

2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д.

3) Пептиды. Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH«(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной.

4) Ионы металлов, например Zn2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu2+ — амилазы, Mg2+ — АТФ-азы (например, миозиновой АТФ-азы).

Могут участвовать в:

-присоединении субстратного комплекса фермента;

-в катализе;

-стабилизация оптимальной конформации активного центра фермента;

-стабилизация четвертичной структуры.

Источник

Коферменты представляют собой органические соединения небелковой природы, которые необходимы для функционирования многих ферментов. Большинство из них являются производными витаминов.

Причиной нарушения метаболизма и снижения синтеза полезных веществ в организме часто является снижение активности некоторых видов ферментов. Поэтому то коэнзимы столь нам необходимы.

Читайте также:  Какой витамин позволивший курам вылечится содержится в неочищенном рисе

В узком смысле, кофермент – это коэнзим Q10, производная фолиевой кислоты и некоторых других витаминов. Важное значение для организма человека имеют те коферменты, которые продуцируются витаминами группы B.

Коэнзим

© rosinka79 — stock.adobe.com

Кофермент нужен для того, чтобы повысить производительность клеточной энергии, которая нужна для поддержания жизнедеятельности. Любой процесс, который протекает в организме человека, требует колоссального энергетического ресурса, будь то умственная деятельность, работа сердечно-сосудистой или пищеварительной системы, физическая активность при нагрузке на опорно-двигательный аппарат. Благодаря реакции, в которую коферменты вступают с ферментами, продуцируется необходимая энергия.

Функции коферментов

Коферменты представляют собой небелковые соединения, которые способствуют активации потенциала ферментов. Они выполняют 2 основные функции:

  1. Участвуют в каталитических процессах. Кофермент сам по себе не вызывает в организме необходимых молекулярных превращений, в состав ферментов он входит вместе с апоферментом, и только при их взаимодействии происходят каталитические процессы связывания субстрата.
  2. Транспортировочная функция. Кофермент соединяется с субстратом, в результате чего образуется прочный транспортировочный канал, по которому свободно перемещаются молекулы до центра другого фермента.

Все коферменты объединяет одно важное свойство – они являются термически устойчивыми соединениями, но свойственные им химические реакции довольно сильно разнятся.

Классификация коферментов

По способам взаимодействия с апоферментом коферменты делятся на:

  • Растворимые – во время реакции соединяется с молекулой фермента, после чего изменяется по химическому составу и высвобождается заново.
  • Простетические – прочно связаны с апоферментом, в процессе реакции находится в активном центре фермента. Их регенерация происходит при взаимодействии с другим коферментом или субстратом.

По химической структуре коферменты делятся на три группы:

  • алифатические (глутатион, липоевая кислота и др.)
  • гетероциклические (пиридоксальфосфат, тетрагидрофолиевая кислота, нуклеозидфосфаты и их производные (КоА, ФМН, ФАД, НАД и др.), металлопорфириновые гемы и др.
  • ароматические (убихиноны).

По функциональному признаку выделяют две группы коферментов:

  • окислительно-восстановительные,
  • коферменты переноса групп.

Коферменты в спортивной фармакологии

При интенсивных физических нагрузках расходуется большое количество энергии, ее запас в организме истощается, а многие витамины и питательные вещества потребляются гораздо быстрее, чем вырабатываются. Спортсмены испытывают физическую слабость, нервное истощение, нехватку сил. Для того чтобы помочь избежать многих симптомов были разработаны специальные препараты с коферментами в составе. Их спектр действия очень широк, назначаются они не только спортсменам, но и людям с достаточно серьезными заболеваниями.

Кокарбоксилаза

Кофермент, который образуется только из поступающего в организм тиамина. У спортсменов он служит средством профилактики перенапряжения миокарда, расстройств нервной системы. Препарат назначается при радикулитах, невритах, а также острой печеночной недостаточности. Вводится внутривенно, разовая доза не должна быть менее 100 мг.

Препарат Кокарбоксилаза

Кобамамид

Заменяет по действию функционал витамина B12, является анаболиком. Помогает спортсменам нарастить мышечную массу, увеличивает выносливость, способствует быстрому восстановлению после занятий. Выпускается в форме таблеток и растворов для внутривенного введения, суточная норма составляет 3 таблетки или 1000 мкг. Длительность курса – не более 20 дней.

Препарат Кобамамид

Оксикобаламин

По своему действию схож с витамином B12, но намного дольше держится в крови и гораздо оперативнее преобразуется в коферментную формулу благодаря прочному соединению с плазменными белками.

Препарат Оксикобаламин

Пиридоксальфосфат

Для препарата характерны все свойства витамина B6. От него он отличается быстрым терапевтическим эффектом, назначается к приему даже при нарушении фосфорилирования пиридоксина. Принимается три раза в день, суточная доза составляет не более 0,06 гр, а курс – не дольше месяца.

БАД Пиридоксальфосфат

Пиридитол

Активизирует метаболические процессы центральной нервной системы, повышает проходимость глюкозы, препятствует избыточному образованию молочной кислоты, повышает защитные свойства тканей, в том числе устойчивость к гипоксии, которая возникает во время интенсивных спортивных тренировок. Принимают препарат три раза в день по 0,1 гр. после завтрака в течение месяца

Пантогам

Является гомологом пантотеновой кислоты, ускоряет обменные процессы, снижает проявление болевых реакций, повышает устойчивость клеток к гипоксии. Действие препарата направлено на активацию работы головного мозга, повышение выносливости, показан к применению при черепно-мозговых травмах различного типа. Таблетки принимаются в течение месяца по 0,5 гр не чаще трех раз в день.

Препарат Пиридитол

Карнитин

Выпускается в форме препарата для инъекций, действие которых направлено на активацию жирового обмена, ускорение регенерации клеток. Оказывает анаболическое, антигипоксическое и антитиреоидное действие. Является синтетическим заменителем витамина B6. Эффективен в виде внутривенной капельницы.

Добавка Карнитин

Флавинат

Образуется в организме из рибофлавина, активно участвует в углеводном, липидном и аминокислотном обмене. Выпускается в виде раствора для внутримышечных инъекций, так как его усвоение в желудке неэффективно при нарушении всасывания рибофлавина.

Читайте также:  Витамина какие болезни вызывают его отсутствие

Липоевая кислота

Нормализует углеводный обмен. Повышает скорость окисления углеводов и жирных кислот, что способствует повышению энергетического запаса.

Препарат Липоевая кислота

Мария Ладыгина

Научный консультант проекта.
Физиолог (биологический факультет СПБГУ, бакалавриат).
Биохимик (биологический факультет СПБГУ, магистратура).
Инструктор по хатха-йоге (Институт управления развитием человеческих ресурсов, проект GENERATION YOGA). Научный сотрудник (2013-2015 НИИ акушерства, гинекологии и репродуктологии им. Отта, работа с маркерами женского бесплодия, анализ биологических образцов; 2015-2017 НИИ особо чистых биопрепаратов, разработка лекарственных средств) Автор и научный консультант сайтов по тематике ЗОЖ и науке (в области продления жизни) C 2019 года научный консультант проекта Cross.Expert.

Редакция cross.expert

Источник

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами:

— ковалентными связями;

— ионными связями;

— гидрофобными взаимодействиями и т.д.

Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента.

Все коферменты делят на две большие группы: витаминные и невитаминные.

Коферменты витаминной природы – производные витаминов или химические модификации витаминов.

1 группа: тиаминовые
– производные витамина В1. Сюда относят:

— тиаминмонофосфат (ТМФ);

— тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза;

— тиаминтрифосфат (ТТФ).

ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, a-кетоглутаровая кислота. Этот фермент катализирует отщепление СО2.

Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла.

2 группа: флавиновые коферменты, производные витамина В2. Сюда относят:

— флавинмононуклеотид (ФМН);

— флавинадениндинуклеотид (ФАД).

Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД.

ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. . Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН2. Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах. 

isoaloksazine_ox

3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.

4 группа: никотинамидные, производные витамина РР — никотинамида:

 Представители:

— никотинамидадениндинуклеотид (НАД);

— никотинамидадениндинуклеотидфосфат (НАДФ).

Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.

Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н+]

5 группа: пиридоксиновые, производные витамина В6.

— пиридоксин;

— пиридоксаль;

— пиридоксамин.

Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ).

ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования. Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК.

Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма.

1) Нуклеотиды
– УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза).

2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д.

3) Пептиды. Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH«(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной.

4) Ионы металлов, например Zn2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu2+ — амилазы, Mg2+ — АТФ-азы (например, миозиновой АТФ-азы).

Могут участвовать в:

-присоединении субстратного комплекса фермента;

-в катализе;

-стабилизация оптимальной конформации активного центра фермента;

-стабилизация четвертичной структуры.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Источник