Определение йодного числа рыбьего жира

ОКС 67.200.10

Предисловие

1 ПОДГОТОВЛЕН ОАО «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС»), Государственным научным учреждением «Всероссийский научно-исследовательский институт жиров Российской академии сельскохозяйственных наук» (ГНУ «ВНИИЖ Россельхозакадемии») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом стандартизации ТК 238 «Масла растительные и продукты их переработки»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. N 705-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 3961:2009* «Жиры и масла животные и растительные. Определение йодного числа» (ISO 3961:2009 «Animal and vegetable fats and oils — Determination of iodine value», IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Сведения о соответствии ссылочных международных стандартов национальным стандартам и действующим в этом качестве международным стандартам приведены в дополнительном приложении ДA

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Октябрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает метод определения йодного числа животных и растительных жиров и масел (далее — жиры).

Приложение A описывает метод расчета йодного числа, исходя из жирно-кислотного состава. Данный метод неприменим к рыбьему жиру.

Примечание — Метод, приведенный в приложении A, основан на AOCS Recommended Practice Cd 1c-85 [1].
________________
Американское общество химиков-жировиков.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ISO 661, Animal and vegetable fats and oils — Preparation of test sample (Жиры и масла животные и растительные. Подготовка пробы для испытания)

ISO 3696, Water for analytical laboratory use — Specifications and test methods (Вода для лабораторного анализа. Технические требования и методы испытаний)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 йодное число (iodine value, IV), : Масса галогена в пересчете на йод, поглощенная пробой в условиях стандартизованной процедуры, деленная на массу пробы.

Примечание — Йодное число выражают в граммах на 100 г жира.

4 Сущность метода

Пробу растворяют в растворителе и добавляют реактив Вийса. По истечении установленного интервала времени добавляют йодид калия и воду, затем выделившийся йод титруют раствором тиосульфата натрия.

Примечание — Приложение A описывает метод расчета йодного числа исходя из жирно-кислотного состава. Однако этот метод не является ускоренным. Данный метод дает два результата на основе одной аналитической процедуры. Титриметрический метод является арбитражным.

5 Реактивы

Используют реактивы только пригодной для анализа степени чистоты и воду в соответствии с ИСО 3696, степень чистоты 3.

ПРЕДУПРЕЖДЕНИЕ — Следует соблюдать все правила обращения с опасными веществами. Необходимо принимать меры технической, организационной и личной безопасности.

5.1 Калия йодид, раствор концентрацией 100 г/дм, не содержащий йодатов или свободного йода.

5.2 Раствор крахмала: смешивают 5 г растворимого крахмала с 30 см воды и добавляют к 1000 см кипящей воды. Кипятят в течение 3 мин и дают охладиться. Ежедневно готовят свежий раствор крахмала.

5.3 Натрия тиосульфат, стандартный раствор для титрования, концентрацией =0,1 моль/дм, уточненной не более чем за семь дней до использования.

5.4 Растворитель, приготовленный смешиванием 50 см циклогексана и 50 см безводной уксусной кислоты.

5.5 Реактив Вийса, содержащий монохлорид йода в уксусной кислоте. Соотношение I/Cl в реактиве Вийса должно быть в пределах (1,1±0,1).

Следует использовать готовый реактив Вийса. Следует соблюдать срок годности данного реактива.

6 Оборудование

Используют обычное лабораторное оборудование и, в частности, приведенное ниже.

6.1 Ложечки стеклянные, пригодные для взвешивания пробы и для помещения в колбы (см. 6.2).

6.2 Конические колбы вместимостью 500 см со шлифованными стеклянными пробками.

6.3 Весы аналитические, позволяющие взвешивать с точностью ±0,001 г.

6.4 Колба мерная вместимостью 1000 см по [2], класс A.

6.5 Пипетка вместимостью 25 см, автоматическая или по [3], класс A, оснащенная грушей для всасывания.

7 Отбор проб

Лабораторией должна быть получена представительная проба. Она не должна быть повреждена или изменена в процессе транспортирования или хранения.

Отбор проб не является частью метода, устанавливаемого в настоящем стандарте. Рекомендуемый метод отбора проб — по [4].

8 Подготовка испытуемой пробы

Испытуемую пробу готовят в соответствии с методом, приведенным в ИСО 661.

9 Выполнение определения

9.1 Анализируемая проба и приготовление холостого раствора

9.1.1 В зависимости от ожидаемого йодного числа испытуемую пробу взвешивают с точностью 0,001 г в стеклянной ложечке для взвешивания (см. 6.1), массой, указанной в таблице 1.

Таблица 1

Ожидаемое йодное число , г/100 г

Масса порции пробы , г

Объем растворителя , см

<1,5

15,00

25

1,5<2,5

10,00

25

2,5<5

3,00

20

5<20

1,00

20

20<50

0,40

20

50<100

0,20

20

100<150

0,13

20

150<200

0,10

20

Примечание — Масса пробы должна быть такой, чтобы имелся избыток реактива Вийса в количестве от 50% до 60% добавляемого количества, т.е. от 100% до 150% прореагировавшего количества.

9.2 Определение

9.2.1 Стеклянную ложечку, содержащую пробу, помещают в коническую колбу вместимостью 500 см (см. 6.2) и добавляют объем растворителя (см. 5.4), указанный в таблице 1. Добавляют 25,00 см реактива Вийса (см. 5.5) при помощи пипетки (см. 6.5). Закрывают колбу пробкой, перемешивают содержимое круговыми движениями и помещают колбу в темное место.

Примечание — Ложечка остается в колбе.

ПРЕДУПРЕЖДЕНИЕ — Недопустимо засасывать реактив в пипетку ртом.

9.2.2 Готовят холостой раствор, используя растворитель и реактив, как это описано в 9.2.1, без внесения пробы.

9.2.3 В случае проб, имеющих йодное число менее 150, колбы выдерживают в темноте в течение 1 ч.

В случае проб с йодным числом более 150, а также полимеризованных продуктов и масел, содержащих жирные кислоты с сопряженными двойными связями (таких как тунговое масло, дегидратированное касторовое масло), любых масел, содержащих жирные кетокислоты (таких как некоторые сорта гидрогенизированного касторового масла), и продуктов со значительной степенью окисления колбы выдерживают в темноте в течение 2 ч.

9.2.4 По окончании реакции (см. 9.2.3) добавляют 20 см йодида калия (см. 5.1) и 150 см воды.

Содержимое колбы титруют стандартным раствором тиосульфата натрия (см. 5.3) до тех пор, пока обусловленная йодом желтая окраска практически не исчезнет. Добавляют несколько капель раствора крахмала (5.2) и продолжают титрование, пока не исчезнет синяя окраска сразу после очень энергичного встряхивания. Отмечают объем раствора тиосульфата натрия , пошедший на титрование. Возможно также потенциометрическое титрование.

9.2.5 Проводят определение, используя при этом холостой раствор (см. 9.2.2). В холостом определении (см. 9.2.4) регистрируют объем раствора тиосульфата натрия, пошедший на титрование, .

10 Обработка результатов

Йодное число , г/100 г жира, рассчитывают по формуле

,

где — концентрация раствора тиосульфата натрия (см. 5.3), моль/дм;

— объем раствора тиосульфата натрия, используемый в холостом определении, см;

— объем раствора тиосульфата натрия, пошедший на титрование, см;

— масса пробы, г.

Результат округляют, как это указано в таблице 2.

Таблица 2

Йодное число , г/100 г

Округление

<20

До 0,1

20<60

До 0,5

60

До 1

11 Прецизионность

11.1 Общие положения

Приведенные значения могут быть неприменимы к диапазонам концентраций и матрицам, отличным от приведенных.

11.2 Сходимость

Абсолютное расхождение между двумя независимыми результатами испытаний, полученными с использованием одного и того же метода применительно к идентичному испытуемому материалу в той же лаборатории, одним и тем же оператором с использованием одного и того же оборудования в течение короткого периода времени, должно быть не более, чем значения , приведенные в таблице 3.

11.3 Воспроизводимость

Абсолютное расхождение между двумя независимыми результатами испытаний, полученными с использованием одного и того же метода применительно к идентичному испытуемому материалу в различных лабораториях, различными операторами с использованием различного оборудования, должно быть не более, чем значения , приведенные в таблице 3.

Таблица 3

Йодное число , г/100 г

Предел сходимости

Предел воспроизводимости

<20

0,2

0,7

20<50

1,3

3,0

50<100

2,0

3,0

100<135

3,5

5,0

Приложение A (справочное). Метод расчета значения йодного числа

Приложение A
(справочное)

A.1 Общие положения

Данное приложение описывает метод расчета йодного числа пищевых масел исходя из жирно-кислотного состава, определяемого газовой хроматографией метиловых эфиров жирных кислот. Он применим к триглицеридам и свободным жирным кислотам, а также к продуктам их гидрогенизации. Для масел с содержанием неомыляемых веществ, превышающим 0,5% (например, для рыбьего жира), расчеты часто дают заниженные значения и, таким образом, не применяются.

ПРЕДУПРЕЖДЕНИЕ — Хотя данная процедура и дает значение йодного числа, она не является ускоренным методом. Данный метод дает два результата на основе одного анализа.

А.2 Процедура

А.2.1 Определяют жирно-кислотный состав масла или смеси жирных кислот.

А.2.2 Рассчитывают значения йодного числа группы компонентов, как это описано в А.2.2.1 и А.2.2.2.

Примечание — Расчеты часто дают заниженные значения для продуктов с низкими значениями йодного числа.

А.2.2.1 Триглицериды

Значение йодного числа для триглицеридов , рассчитывают по формуле

.

А.2.2.2 Свободные жирные кислоты

Значение йодного числа для свободных жирных кислот рассчитывают по формуле

,

где — массовая доля гексадеценовой кислоты, %;

— массовая доля октадеценовой кислоты, %;

— массовая доля октадекадиеновой кислоты, %;

— массовая доля октадекатриеновой кислоты, %;

— массовая доля эйкозеновой кислоты, %;

— массовая доля докозеновой кислоты, %.

Нижние индексы в формате обозначают число атомов углерода в молекуле , за которым следует количество двойных связей .

Рассчитанные значения йодного числа, полученные на основе газохроматографического (ГХ) определения жирно-кислотного состава нетриглицеридных жировых продуктов, таких как неполные эфиры глицерина, неполные эфиры сорбитола/сорбитана/изосорбида, неполные эфиры полиоксиэтилена сорбитола/сорбитана/изосорбида или глицерина, представляют собой рассчитанные значения йодного числа только жирных кислот, используемых для приготовления неполных эфиров. Для получения истинных значений йодного числа неполных эфиров нежирных кислот и многоатомных спиртов, оказывающих разбавляющий эффект, необходимо использовать метод определения йодного числа с хлорированным реактивом Вийса. Значения йодного числа неполных эфиров, полученные при использовании метода Вийса, меньше, чем значения, полученные при помощи ГХ, из-за разбавляющего эффекта многоатомного спирта.

Приложение ДA (справочное). Сведения о соответствии ссылочных международных стандартов национальным стандартами действующим в этом качестве международным стандартам

Приложение ДA
(справочное)

Таблица ДA.1

Обозначение ссылочного международного стандарта

Степень соответствия

Обозначение и наименование соответствующего национального стандарта

ISO 661:2003

*

ISO 3696:1987

MOD

ГОСТ Р 52501-2005 «Вода для лабораторного анализа. Технические условия»

* Соответствующий национальный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

— MOD — модифицированный стандарт.

Библиография

[1]

Рекомендуемая практика AOCS, Cd 1c-85 Йодное число, рассчитанное на основе ГЖХ

[2]

ИСО 1042:1998

Посуда лабораторная стеклянная. Мерные колбы с одной меткой

[3]

ИСО 648:2008

Посуда лабораторная стеклянная. Пипетки с одной меткой

[4]

ИСО 5555:2001

Жиры и масла животные и растительные. Отбор проб

УДК 636.087.07:006.354

ОКС 67.200.10

Ключевые слова: жиры, масла животные и растительные, йодное число, реактив Вийса, триглицериды, жирные кислоты

Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
официальное издание
М.: Стандартинформ, 2019

Источник

Жиры специального назначения в большинстве жироемких кондитерских изделий являются структурообразователями. При их выборе технологи опираются, прежде всего, на твердость и температуру плавления.

Твердостью называют способность жиров сопротивляться проникновению в них другого тела, не получающего остаточной деформации. Этот показатель во многом определяет структурно-реологические свойства жира.

Для характеристики твердости в отечественной промышленности принят метод, основанный на установлении величины нагрузки, необходимой для разрезания стандартного образца жира, закристаллизованного в определенных условиях. Определение производится в соответствии с ГОСТом Р 52179-23 «Маргарины, жиры для кулинарии, кондитерской, хлебопекарной и молочной промышленности» на твердомере Каминского. На данный показатель сегодня все еще продолжают ориентироваться многие предприятия кондитерской отрасли. Но, возможно, не каждый технолог знает, что погрешность этого метода довольно велика: в соответствии с ГОСТом относительная погрешность измерений твердости при 15 ?С составляет 24%.То есть, если в спецификации указано, что твердость жира по Каминскому составляет 5 г/см, то с учетом погрешности это значение может колебаться в пределах 4-6 г/см.

jodnoe-chislo

В мировой практике о твердости пищевых жиров судят по содержанию твердых триглицеридов (ТТГ) при 15 ?С и 2 ?С. Самым современным методом измерения массовой доли ТТГ в настоящее время является метод ядерного магнитного резонанса (ЯМР), который описан в ГОСТ Р 53158-28 и ИСО 8292:28. Данный метод определяет процентное содержание твердых триглицеридов в образце жира при определенной температуре. Метод ЯМР обеспечивает возможность оценки массовой доли ТТГ образцов жира с высокой точностью и воспроизводимостью получаемых данных и минимальной длительностью измерений. Так как процесс проведения измерений полностью автоматизирован, совершенно исключается зависимость результата измерений от индивидуальных особенностей оператора, присутствующая в методе определения твердости жиров на твердомере Каминского.

Температура плавления является определяющим показателем при формировании вкусовых качеств готового продукта. Низкая температура способствует быстрому таянию и высвобождению аромата. Этот параметр влияет и на усвояемость жира. Чем выше температура плавления, тем хуже жир усваивается организмом человека.

Температура плавления характеризует переход жира из твердого состояния в жидкое. Она может определяться двумя методами. По ГОСТу Р 52179-23 точкой плавления считается температура, при которой жир в капилляре начинает подниматься вверх. Относительная погрешность измерения данным методом составляет ± 1%.Измерение с использованием термосистемы Меттлер Толедо FP 9, предложенной международной организацией по стандартизации (ИСО), позволяет определять температуру плавления с точностью ,2 ?С/мин.: ±,4 ?С. Температура плавления определяется прибором автоматически как среднее арифметическое из трех определений.

Температура застывания характеризует переход жира из жидкого состояния в твердое. Она представляет собой интервал значений, более низких, чем температура плавления. Данный показатель может определяться двумя методами (по Дженсену и Жукову), основанными на определении температуры жира, соответствующей максимальному выделению скрытой теплоты кристаллизации при определенных условиях охлаждения образца жира.

Важным технологическим параметром, характеризующим скорость кристализации жира, и, соответственно, определяющим производительность охлаждающего оборудования, является продолжительность застывания, под которым понимают время, за которое образец жира достигает температуры застывания (по Дженену или Жукову).

Одной из основных идентификационных характеристик липидов является их жирнокислотный состав. Согласно ГОСТу 3623-98 именно по нему можно обнаружить фальсификацию растительных масел и маргариновой продукции. Жирнокислотный состав определяется методом газовой хроматографии. С помощью данного метода определяют качественный и количественный жирнокислотный состав, количество трансизомеров, а также йодное число жира.

Йодное число является важнейшим химическим показателем. Йодное число позволяет судить о степени ненасыщенности жирных кислот, входящих в состав жира. Чем выше содержание ненасыщенных жирных кислот, тем выше значение йодного числа.

Йодное число жира – условная величина, представляющая собой число граммов йода, эквивалентное галогену, присоединившемуся к 1 г исследуемого жира, выраженное в процентах йода. Его можно определить по жирнокислотному составу как сумму произведений процентного содержания каждой ненасыщенной жирной кислоты на соответствующий ей коэффициент.

Триглицеридный состав дает информацию о том, какие триглицериды и в каком количестве входят в состав данного жира. Особую важность этот показатель приобретает при идентификации масла какао и его эквивалентов. Необходимо отметить, что даже если жирнокислотный состав и йодное число одинаковы, триглицеридный состав может быть разным, благодаря чему физико-химические показатели жиров будут отличаться. Это зависит от порядка распределения жирных кислот в триглицериде. Анализ проводится с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ).

Под воздействием таких неблагоприятных факторов, как повышенная влажность и высокие температуры при хранении и перекачке жира, происходит гидролиз, в результате которого образуются глицерин и свободные жирные кислоты. Высокомолекулярные жирные кислоты не имеют вкуса и запаха, и поэтому при увеличении их количества в продукте ощутимого изменения органолептических показателей не наблюдается, что не относится к жирам лауриновой группы (кокосовому, пальмоядровому маслам). Так как свободная лауриновая кислота имеет низкий вкусовой порог, то даже ее следов достаточно для появления «мыльного» привкуса.

Кислотное число, в отличие от йодного числа жира, как раз и определяет количество свободных жирных кислот, содержащихся в 1 г жира, и выражается количеством мг едкого калия (КОН), необходимого для их нейтрализации. Данный показатель определяется в соответствии с ГОСТом Р 5211-23. Федеральный Закон №9 (ФЗ-9) установил норму кислотного числа для растительного масла на уровне не более ,6 мг КОН/г. В жирах специального назначения этот показатель вообще не регламентируется.

jodnoe-chislo-zhira

В результате действия кислорода в жирах накапливаются первичные и вторичные продукты окисления. Именно их присутствие обуславливает появление характерного неприятного вкуса и запаха в жирах. Количество перекисей и гидроперекисй характеризует перекисное число, которое определяется в соответствии с ГОСТом 26593-85 и измеряется в ммоль активного кислорода/кг.Оно показывает, какое количество активного кислорода вступило в реакцию окисления жирных кислот. По ФЗ-9 перекисное число должно быть не более 1 ммоль активного кислорода/кг.

Альдегиды являются вторичными продуктами окисления жиров. Анизидиновое число–это мера концентрации вторичных продуктов окисления, встречающихся в масле и жире. Оно может характеризовать возможную устойчивость жира.

Высокое анизидиновое число исходного жира свидетельствует о продолжительном времени или неудовлетворительных условиях его хранения, либо о подвергании его длительному механическому и термическому воздействию. Даже если готовый продукт с завышенным анизидиновым числом получит высокую дегустационную оценку, при хранении может отмечаться реверсия вкуса. Стандарта на анизидиновое число для качественного жира не существует, но в мировой практике, также как и на производстве «ЭФКО», хорошим показателем считается анизидиновое число, не превышающее 3.

Таким образом, для получения качественных изделий на основе жира необходимо учитывать целый ряд показателей, охватывающих как чисто технологические свойства (твердость, температуру плавления и застывания, значение йодного чила), так и показатели порчи продукта (кислотное, перекисное и анизидиновые числа).

Определение йодного числа рыбьего жира

Источник