Какой витамин участвует в синтезе родопсина

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 марта 2019;
проверки требуют 3 правки.
Родопсин (зрительный пурпур) — основной зрительный пигмент. Содержится в палочках сетчатки глаза морских беспозвоночных, рыб, почти всех наземных позвоночных и человека и по данным недавнего исследования в клетках кожи меланоцитах[1]. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться по структуре и молекулярной массе. Светочувствительный рецептор клеток-палочек, представитель семейства А (или семейства родопсина) G-белоксопряженных рецепторов (GPCR-рецепторов).
Функции родопсина[править | править код]
Под действием света светочувствительный зрительный пигмент изменяется, и один из промежуточных продуктов его превращения отвечает за возникновение зрительного возбуждения. Зрительные пигменты, содержащиеся в наружном сегменте фоторецепторной клетки, представляют собой сложные окрашенные белки (хромопротеиды). Та их часть, которая поглощает видимый свет, называется хромофором. Это химическое соединение — альдегид витамина А, или ретиналь. Белок зрительных пигментов, с которыми связан ретиналь, называется опсином.
При поглощении кванта света (фотона) хромофорная группа белка (11-цис-ретиналь) изомеризуется в транс-форму. Возбуждение зрительного нерва происходит при фотолитическом разложении родопсина за счёт изменения ионного транспорта в фоторецепторе. Впоследствии родопсин восстанавливается (регенерирует) в результате синтеза 11-цис-ретиналя и опсина или в процессе синтеза новых дисков наружного слоя сетчатки.
Родопсин относится к супер семейству трансмембранных рецепторов GPCR (рецепторов, связанных с G-белками). При поглощении света конформация белковой части родопсина меняется, и он активирует G-белок трансдуцин, который активирует фермент цГМФ-фосфодиэстеразу. В результате активации этого фермента в клетке падает концентрация цГМФ и закрываются цГМФ-зависимые натриевые каналы. Так как ионы натрия постоянно выкачиваются из клетки АТФ-азой, концентрация ионов натрия внутри клетки падает, что вызывает её гиперполяризацию. В результате фоторецептор выделяет меньше тормозного медиатора ГАМК, и в биполярной нервной клетке, которая «растормаживается», возникают нервные импульсы.
Спектр поглощения родопсина[править | править код]
Специфический спектр поглощения зрительного пигмента определяется как свойствами хромофора и опсина, так и характером химической связи между ними (подробнее об этом см. обзор:[2]). Этот спектр имеет два максимума — один в ультрафиолетовой области (278 нм), обусловленный опсином, и другой — в видимой области (около 500 нм), — поглощение хромофора (см. рисунок). Превращение при действии света зрительного пигмента до конечного стабильного продукта состоит из ряда очень быстрых промежуточных стадий. Исследуя спектры поглощения промежуточных продуктов в экстрактах родопсина при низких температурах, при которых эти продукты стабильны, удалось подробно описать весь процесс обесцвечивания зрительного пигмента [3].
В живом глазу, наряду с разложением зрительного пигмента, постоянно идёт и процесс его регенерации (ресинтеза). При темновой адаптации этот процесс заканчивается только тогда, когда весь свободный опсин соединился с ретиналем.[4]
Дневное и ночное зрение[править | править код]
Из спектров поглощения родопсина видно, что восстановленный родопсин (при слабом «сумеречном» освещении) отвечает за ночное зрение, а при дневном «цветовом зрении» (ярком освещении) он разлагается, и максимум его чувствительности смещается в синюю область. При достаточном освещении палочка работает совместно с колбочкой, являясь приёмником синей области спектра[5]. Полное восстановление родопсина у человека занимает около 30 минут.
Родопсин в клетках кожи[править | править код]
По данным исследования 2011 года, проведенного в Брауновском университете, клетки кожи меланоциты также содержат родопсин. Родопсин реагирует на ультрафиолетовое излучение и запускает выработку меланина[1]
Примечания[править | править код]
- ↑ 1 2 Skin ‘sees’ UV light, starts producing pigment
- ↑ Островский М. А., Федорович С. Е., Голубев И. Н., 1967, Биофизика, 12 : 877.
- ↑ Hubbard R., Bownds D., Yoshizawa T., 1965. Cold Spring Harbor Symp. Biol., 30 : 301.
- ↑ АН СССР, объединённый научный совет «физиология человека и животных», Физиология сенсорных систем. Ч. 1. Физиология зрения. 1971 г., Издательство «Наука», Ленинградское отделение. Стр. 94 — 101
- ↑ С. Д. Ременко, «Цвет и зрение», «Картеа Молдовеняскэ», Кишинёв, 1982 г.
Этимология[править | править код]
Название «родопсин» происходит от др.-греч. ρόδον — роза и др.-греч. όπσις — зрение.
См. также[править | править код]
- Бактериородопсин
- Сенсорный родопсин II
- Родопсинкиназа
Ссылки[править | править код]
Источник
Витамин А (ретинол) необходим для сопротивляемости организма атакам вирусов, грибков, бактерий и аллергенов. Укрепляет слизистые оболочки желудка, ротовой полости, кишечника, легких, и не дает токсинам проникать в организм и вредить его нормальному функционированию. Участвует в выработке красных кровяных телец, предотвращает дефицит железа, анемию. Поддерживает иммунитет и эмоциональную стабильность, помогает преодолеть хроническую усталость.
Витамин А представляет собой группу из четырех следующих химических веществ
1. А1 – ретинол (ретинола ацетат);
2. А2 – дегидроретинол;
3. Ретиноевая кислота;
4. Активная форма А1 – ретиналь.
Все указанные вещества являются различными формами витамина А. Поэтому когда говорят о витамине А, подразумевают либо какое-либо вещество из вышеперечисленных, либо все их вместе. Общим наименованием всех форм витамина А является ретинол.
Витамин А существует в двух основных формах
1. Собственно витамин А (ретинол), содержащийся в продуктах животного происхождения.
2. Провитамин А (каротин), содержащийся в продуктах растительного происхождения.
Ретинол из продуктов животного происхождения сразу усваивается организмом человека в пищеварительном тракте. А каротин (провитамин А), попадая в кишечник, сначала превращается в ретинол, после чего усваивается организмом.
После попадания в кишечник, в кровь всасывается от 50 до 90% от суммарного количества ретинола. В крови ретинол соединяется с белками и в таком виде транспортируется в печень, где откладывается в запас, формируя депо, которого при прекращении поступления витамина А извне может хватить минимум на год. При необходимости ретинол из печени поступает в кровь и вместе с ее током попадает в различные органы, где клетки при помощи специальных рецепторов улавливают витамин, транспортируют его внутрь и используют для своих нужд. Ретинол постоянно высвобождается из печени, поддерживая в крови его нормальную концентрацию, равную 0,7 мкмоль/л. При поступлении витамина А с пищей, сначала он попадает в печень, восполняя истраченные запасы, а оставшееся количество остается циркулировать в крови. Ретиналь и ретиноевая кислота в крови содержатся в следовых количествах (менее 0,35 мкмоль/л), поскольку в этих форма витамин А присутствует в основном в тканях различных органов.
Попадая в клетки различных органов, ретинол превращается в свои активные формы – ретиналь или ретиноевую кислоту, и в таком виде встраивается в различные ферменты и другие биологические структуры, выполняющие жизненно-важные функции. Без активных форм витамина А данные биологические структуры не способны выполнять свои физиологические функции, вследствие чего развиваются различные нарушения и заболевания.
Витамин А усиливает свое действие и лучше всасывается в сочетании с витамином Е и микроэлементом цинком.
Витамин А является жирорастворимым, то есть, хорошо растворяется в жирах, а потому легко накапливается в организме человека. Именно из-за возможности накопления жирорастворимые витамины, в том числе А, способны при длительном применении в больших количествах (более 180 – 430 мкг в сутки в зависимости от возраста) вызвать передозировку. Передозировка, как и дефицит витамина А приводит к серьезным нарушениям нормального функционирования различных органов и систем, в первую очередь глаз и репродуктивного тракта.
Витамин А в организме человека выполняет следующие биологические функции
Улучшают рост и развитие клеток всех органов и тканей;
Необходим для нормального роста и формирования костей;
Необходим для нормального функционирования всех слизистых оболочек и кожного эпителия, поскольку профилактирует гиперкератоз, чрезмерное слущивание и метаплазию (раковое перерождение клеток эпителия);
Обеспечивают хорошее зрение в условиях недостаточного или слабого освещения (так называемое сумеречное зрение). Дело в том, что ретинол входит в состав зрительного пигмента родопсина, находящегося в клетках сетчатки глаза, называемых за определенную форму палочками. Именно наличие родопсина обеспечивает хорошую видимость в условиях слабого, не яркого освещения;
Улучшает состояние волос, зубов и десен;
Улучшает рост эмбриона, способствует правильному формированию и развитию различных органов и тканей плода;
Усиливает образование гликогена в печени и в мышцах;
Увеличивает концентрацию холестерина в крови;
Принимает участие в синтезе стероидных гормонов (тестостерон, эстрогены, прогестерон и др.);
Профилактирует развитие злокачественных опухолей различных органов;
Регулирует иммунитет. Витамин А необходим для полного протекания процесса фагоцитоза. Кроме того, ретинол усиливает синтез иммуноглобулинов (антител) всех классов, а также Т-киллеров и Т-хелперов;
Антиоксидант. Витамин А обладает мощными антиоксидантными свойствами.
Недостаточное поступление витамина А приводит к его дефициту, которое проявляется рядом нарушений со стороны различных органов. Однако избыточное поступление витамина в организм также способно спровоцировать серьезные расстройства здоровья, обусловленные переизбытком или гипервитаминозом А. Гипервитаминоз А возможен из-за того, что ретинол способен накапливаться в тканях и медленно выводиться из организма. Поэтому витамин А нельзя употреблять в больших количествах, полагая, что ничего плохого от такого полезного вещества не будет. Следует придерживаться рекомендованных доз витамина А и не превышать максимально допустимую суточную дозировку.
Суточная норма витамина А
Человек в различные возрастные периоды должен употреблять разное количество витамина А в сутки. Суточные нормы потребления витамина А для детей разного возраста вне зависимости от пола следующие:
Возраст Суточные нормы потребления витамина А
Новорожденные до полугода 400 – 600 мкг
от 7 до 12 месяцев 500 – 600 мкг
от 1 до 3 лет 300 – 600 мкг
от 4 до 8 лет 400 – 900 мкг
от 9 – 13 лет 600 – 1700 мкг
от 14 – 18 лет 900 – 2800 мкг
от 19 – 70 лет 900 – 3000 мкг
Витамин А в форме ретинола содержится в продуктах животного происхождения
Куриная, говяжья и свиная печень;
Консервированная печень трески;
Икра белуги зернистая;
Желток яиц;
Сливочное масло;
Твердые сорта сыра;
Жирные сорта мяса и рыбы.
Витамин А в форме каротиноидов содержится в растительных продуктах
Морковь;
Петрушка;
Сельдерей;
Шпинат;
Черемша;
Шиповник;
Красный болгарский перец;
Лук-перо;
Салат;
Абрикосы;
Тыква;
Томаты.
Симптомы дефицита Витамин А
Снижение тонуса, низкая работоспособность, плохой иммунитет. Содержится во фруктах и овощах оранжевого и желтого цвета (дыня, болгарский перец, морковь, абрикос, тыква, облепиха), а также в морской рыбе, говяжьей и свиной печени.
Недостаток витамина А проявляется в сухости кожи головы, появлении перхоти, выпадению волос. Дело в том, что задачей данного витамина является регуляция уровня ретиноевой кислоты в волосяных луковицах. Витамин А нужен каждой клетке тела, особенно коже и волосам, он способствует выработке кожного сала, необходимого для предотвращения сухости рогового слоя. Получить этот витамин можно из печени, фасоли, манго, яиц, шпината и моркови. Если вы будете принимать витамин А в виде добавок, то помните, что суточная доза не должна превышать 700 мг, превышение дозы может дать обратный эффект и привести к еще большему выпадению волос. Крайне нежелательно употреблять этот витамин без назначения врача, так как его концентрация в препаратах очень велика, у них имеются противопоказания, к примеру, беременность. Витамин А тоже является жирорастворимым, поэтому важно контролировать, чтобы в рационе присутствовало достаточное количество жиров. Данный витамин участвует в синтезе цинка, необходимого для волос и кожи микроэлемента.
К фармакологическим препаратам, содержащим синтетический витамин А, относят следующие:
Ретинола ацетат или ретинола пальмитат – таблетки, содержащие 30 мг (30000 мкг или 100 000 МЕ ретинола);
Ретинола ацетат или ретинола пальмитат – драже, содержащие по 1 мг (1000 мкг или 3300 МЕ ретинола);
Аксеромальт – концентрат витамина А в рыбьем жире (1 мл жира содержит 100 000 или 170 000 МЕ ретинола) во флаконах;
Масляный раствор каротина;
Аевит;
Алфавит;
Биовиталь-гель;
Биоритм;
Вита Мишки;
Виташарм;
Витрум;
Дуовит;
Компливит;
Мульти-Табс бэби и классик;
Мультифорт;
Пиковит;
Поливит бэби и классик;
Сана-Сол;
Супрадин;
Центрум.
Масляный раствор каротина используется наружно в виде повязок и примочек. Раствор накладывается на хронические экземы, длительно и плохо заживающие язвы, ожоги, отморожения и другие раны кожного покрова.
Таблетки, содержащие 30 мг ретинола и Аевит используются только для лечебных целей, например, для устранения авитаминоза А или терапии сосудистых и кожных заболеваний. Данные таблетки и Аевит нельзя применять с профилактической целью у людей любого возраста, поскольку это может спровоцировать гипервитаминоз, так же, как и гиповитаминоз, проявляющийся тяжелыми нарушениями функционирования различных органов и систем. Все остальные препараты являются витаминами, используемыми для профилактики гиповитаминоза. Соответственно их можно давать людям любого возраста, в том числе детям и беременным женщинам.
К биологически активным добавкам, содержащим витамин А в форме натуральных экстрактов и вытяжек, относятся следующие:
АВС спектрум;
Антиоксидант капсулы и драже;
Артромакс;
Виардо и Виардо форте;
Масло зародышей пшеницы;
Метовит;
Направит;
Нутрикап;
Оксилик;
Черника форте.
Все перечисленные биологически активные добавки содержат профилактическую дозировку витамина А, поэтому могут применяться периодическими короткими курсами у людей различного возраста.
Любые препараты витамина А можно принимать внутрь в виде таблеток, драже, порошков и растворов, вводить инъекционно внутримышечно или использовать наружно в форме аппликаций, повязок, примочек и т.д. Внутримышечное введение витамина А используется только в условиях стационаров в лечении сильного авитаминоза, выраженной куриной слепоты, а также тяжелых воспалительных заболеваний пищеварительного тракта, мочеполовых и дыхательных органов. Наружно витамин А применяется в форме масляного раствора для лечения язв, воспалений, ран, экзем, обморожений, ожогов и других поражений кожи. Внутрь витамин А принимается с профилактическими целями и для лечения легкого гиповитаминоза.
Внутрь необходимо принимать по 3 – 5 драже или таблетки в сутки после еды. Масляный раствор витамина А принимают по 10 – 20 капель три раза в день после еды на кусочке черного хлеба. Длительность курса применения колеблется от 2 недель до 4 месяцев и зависит от цели, с которой используется витамин А. Для лечения гиповитаминозов, куриной слепоты, а также профилактики воспалительных заболеваний кожи и слизистых оболочек, общего укрепления иммунитета и поддержания нормальной концентрации витамина в организме рекомендуются продолжительные курсы не менее одного месяца. После месячного приема витамина А необходимо сделать перерыв на 2 – 3 месяца, после чего курс можно повторить.
Внутримышечно раствор витамина А вводят через день взрослым по 10 000 – 100 000 МЕ и детям по 5000 – 10 000 МЕ. Курс лечения составляет 20 – 30 инъекций.
Максимально допустимая разовая дозировка витамина А при приеме внутрь и внутримышечном введении составляет 50 000 МЕ (15 000 мкг или 15 мг), а суточная – 100 000 МЕ (30 000 мкг или 30 мг).
Местно масляный раствор витамина А используют для лечения различных ран и воспалений кожи (язвы, отморожения, ожоги, незаживающие раны, экзема, фурункулы, гнойнички и др.), нанося его на предварительно очищенную пораженную поверхность.Раневую поверхность просто смазывают масляным раствором по 5 – 6 раз в сутки и прикрывают 1 – 2 слоями стерильной марли. Если нельзя оставлять рану открытой, то на нее наносят мазь с витамином А и сверху накладывают стерильную повязку. При местном применении витамина А обязательно назначают и его прием внутрь в профилактических дозировках (5000 – 10 000 МЕ в сутки).
Лучшей усвояемости и усилению терапевтических и биологических эффектов витамина А способствует витамин Е. Поэтому рекомендуется при назначении витамина А дополнять его витамином Е. Нельзя использовать витамин А одновременно с Холестирамином и сорбентами (например, активированным углем, Энтеродезом, Полифепаном и т.д.), поскольку данные препараты нарушают его всасывание.
Перед применением необходимо проконсультироваться со специалистом.
Источник
Фотохимия зрения. Родопсин и его распад под действием светаИ палочки, и колбочки содержат вещества, которые распадаются под действием света, в результате возбуждаются нервные волокна, выходящие из глаза. Светочувствительное вещество в палочках называют родопсином; состав светочувствительных веществ в колбочках, называемых пигментами колбочек, или цветными пигментами, лишь немного отличается от родопсина. Наружный сегмент палочки, погруженный в пигментный слой сетчатки, примерно на 40% состоит из светочувствительного пигмента родопсина, или зрительного пурпура. Это вещество представляет собой соединение белка скотопсина и каротиноидного пигмента ретиналя (или ретинена). Важно, что ретиналь представлен в особой форме — 11 -цис-ретиналь, поскольку только эта цис-форма может связываться со скотопсином для синтеза родопсина. Причиной этого является фотоактивация электронов в ретинальной части родопсина, что ведет к немедленному превращению цис-формы ретиналя в полностью-транс-форму, которая имеет ту же химическую структуру, что и цис-форма, но другую физическую структуру — прямую, а не изогнутую молекулу. Поскольку трехмерная ориентация реактивных участков полностью-транс-ретиналя больше не сходится с ориентацией реактивных участков белка скотопсина, эта форма ретиналя начинает отделяться от скотопсина. Батородопсин — весьма нестабильное вещество, которое распадается в течение наносекунд до люмиродопсина. Последний, в свою очередь, распадается в течение микросекунд до метародопсина I, затем в течение примерно миллисекунды превращается в метародопсин II и, наконец, гораздо медленнее (в течение нескольких секунд) расщепляется на отдельные продукты — скотопсин и полностью-транс-ретиналь. Именно метародопсин II, называемый также активированным родопсином, вызывает электрические изменения в палочках, которые затем передают зрительный образ в центральную нервную систему в форме потенциалов действия зрительного нерва, что будет изложено далее. Восстановление родопсина. Первой стадией восстановления родопсина является обратное превращение полностью- транс-ретиналя в 11-цис-ретиналь. Этот процесс нуждается в метаболической энергии и катализируется ферментом ретиналь-изомеразой. Сразу после образования 11-цис-ретиналя он автоматически соединяется со скотопсином, вновь формируя родопсин, который остается стабильным, пока снова не начнется его распад при поглощении световой энергии. Роль витамина А в формировании родопсина. На рисунке показан второй химический путь, с помощью которого полностью- транс-ретиналь может превращаться в 11-цис-ретиналь. Это происходит путем конверсии полностью-транс-ретиналя сначала в полностью-транс-ретинол — одну из форм витамина А. Затем под влиянием фермента изомеразы полностью- транс-ретинол превращается в 11-цис-ретинол. Наконец, 11-цис-ретинол конвертируется в 11-цис-ретиналь, который комбинируется со скотопсином, формируя новый родопсин. Витамин А присутствует и в цитоплазме палочек, и в пигментном слое сетчатки. Следовательно, в норме при необходимости он всегда доступен для формирования нового ретиналя. С другой стороны, при избытке ретиналя в сетчатке он легко превращается снова в витамин А, уменьшая таким образом количество светочувствительного пигмента. Позднее мы увидим, что взаимопревращения ретиналя и витамина А особенно важны при долговременной адаптации сетчатки к различной интенсивности света. — Также рекомендуем «Ночная слепота. Возбуждение палочек при активации родопсина светом» Оглавление темы «Оптическая составляющая зрительного аппарата»: |
Источник