Какой витамин участвует в синтезе коллагена

Какой витамин участвует в синтезе коллагена thumbnail

Треть всего белка в человеческом организме — это коллаген[1]. На греческом языке слово «коллаген» означает «рождающий клей», и, хотя изначально речь шла о физико-химических свойствах фибриллярного белка, название оказалось пророческим: без него наш организм действительно начинает «расклеиваться». Поэтому для стимуляции выработки коллагена на оптимальном уровне приходится принимать дополнительные меры.

Что такое коллаген и почему он так важен для организма?

Коллаген — основа всех соединительных тканей. Соединительная ткань — это структуры, которые как каркас «собирают» наш организм в единое целое.

Белковая основа костей, хрящей, суставных сумок, связок — коллаген. Он же содержится в синовиальной (внутрисуставной) жидкости, обеспечивающий плавное скольжение суставных хрящей между собой, входит в состав костей и поддерживает их упругость. Коллаген делает прочной сосудистую стенку, сохраняя ее тонус (главная причина варикозного расширения вен — нарушение структуры коллагена). Данный белок содержится и в фасциях (тонких пленках, покрывающих мышечные пучки), за счет чего они могут свободно скользить, сокращаясь и удлиняясь. И, конечно же, коллаген поддерживает плотность и упругость нашей кожи, защищая ее от появления морщин. До 75% состава кожи занимает именно этот белок.

Почему выработка коллагена с возрастом снижается и чем это грозит

В человеческом теле процессы синтеза новых белков и распада старых всегда происходят параллельно друг другу. Структура белков может повреждаться под действием ультрафиолета (этот процесс известен как фотостарение), активных форм кислорода (перекисное окисление), чрезмерно высокого содержания сахара в крови (гликация), токсинов бактерий и вирусов, тяжелых металлов и других веществ, с которыми так или иначе взаимодействует организм. Обычно в этом нет ничего катастрофического: просто организм «разбирает» поврежденные молекулы белков до основных кирпичиков — аминокислот, а на их месте синтезирует новые белковые молекулы. То же самое происходит и с коллагеном. В молодости естественные процессы разрушения (деградации) старого коллагена и синтеза нового сбалансированы. Но с возрастом баланс сдвигается в пользу разрушения. Особенно у женщин.

Дело в том, что большинство метаболических процессов в женском организме регулируется половыми гормонами — эстрогенами. Обмен коллагена не исключение. Эстрогены, с одной стороны, активируют выработку коллагена специальными клетками — фибробластами, с другой — тормозят процесс деградации собственного коллагена, защищая его от перекисного окисления.

Снижение уровня эстрогенов в женском организме начинается уже после 35 лет. Именно тогда и появляются первые «звоночки», оповещающие о недостатке коллагена: снижается упругость кожи, сама кожа становится суше, возникают первые морщины. После 40 лет снижение уровня женских половых гормонов становится ощутимым, и совсем быстро он начинает падать в пременопаузе и в первые годы после менопаузы.

Параллельно снижается и синтез коллагена. Вслед за кожей становятся сухими и ломкими волосы, начинают хуже расти и истончаются ногти. Далее появляются проблемы с суставами (остеохондрозы, артрозы), мышцы теряют эластичность. Становятся хрупкими и кости — для них важен не только кальций и витамин D, но и коллаген, составляющий эластичный каркас костной ткани, в ячейки которого откладываются соединения кальция, придающие костям прочность.

Как можно стимулировать синтез белка

Что нужно для выработки коллагена? Прежде всего — «строительные материалы». Организм не может создать белок из ничего: для синтеза молекулы коллагена ему необходимы аминокислоты, особенно глицин, пролин, лизин. Если первые два вещества организм может синтезировать сам, то лизин — это незаменимая аминокислота. Она не вырабатывается в человеческом теле и должна поступать извне с продуктами, богатыми белком. Особенно много лизина в твердых сырах, индейке, горбуше, креветках.

Но аминокислоты — еще не все. Нужны минералы: сера, медь, железо. А регулируют процесс выработки коллагена витамины: С, D, А, Е. Все это, разумеется, тоже должно поступать в организм с пищей.

Итак, первое условие нормальной выработки коллагена в организме человека — правильное и полноценное питание, включающее в себя белок (лучше животный), витамины и минералы. Чем разнообразнее питание, тем оно более полноценно. Женщинам в зрелом возрасте также рекомендуется включать в рацион природные источники фитоэстрогенов — продукты на основе сои, семена льна, кунжута. Они поддержат нормальный гормональный баланс, от которого напрямую зависит регуляция синтеза коллагена.

Второе необходимое условие — правильный образ жизни, подразумевающий адекватную нагрузку. Как говорилось выше, коллаген — это не только кожа, но и кости, суставы, мышцы. И чтобы их структура регулярно обновлялась, опорно-двигательный аппарат должен получать оптимальную для него нагрузку. Особенно важны в этом отношении силовые упражнения — они не только укрепляют мышечный каркас, но и замедляют развитие остеопороза. Женщинам, которые чураются тяжелоатлетических упражнений с гантелями и штангой, подойдет, например, кроссфит, силовая йога или пол-дэнс.

К правильному образу жизни можно отнести и особый уход за кожей. Стимулируют выработку коллагена в ней кремы и сыворотки с витамином С или ретинолом (витамином А) в различных формах. Те, кто не пренебрегает походами к косметологу, могут воспользоваться ретиноловыми пилингами, мезотерапией и биоревитализацией. Из аппаратных методов подойдут лазерные и ультразвуковые воздействия, RF-лифтинг. Смысл всех этих способов аппаратного воздействия состоит в том, что после дозированного повреждения, нанесенного коже, она начинает интенсивно восстанавливаться, активируя выработку собственного коллагена.

Чтобы поддержать организм, часто принимают биологически активные добавки, содержащие витаминно-минеральные комплексы и фитоэстрогены. Проблема в том, что современной активной женщине, совмещающей карьеру и семью, обычно не до кулинарных изысков: разнообразие и польза уступают практичности. Поэтому семейное меню чаще всего сводится к привычному набору из пяти–десяти блюд, не требующих особенного времени и сил для приготовления, а то и вовсе к полуфабрикатам. В таких условиях говорить о полноценном наборе в пище витаминов и минералов, необходимых для синтеза коллагена, не приходится.

К тому же даже при идеальном питании могут обнаружиться подводные камни. Например, фитоэстрогены льна полноценно усваиваются только из размолотых зерен: если просто посыпать ими салат, как чаще всего и рекомендуется делать, большинство семян попадут в желудок неповрежденными и благополучно покинут организм, не «поделившись» с ним фитоэстрогенами, то есть естественным путем в непереваренном виде. Но едва ли многие готовы регулярно делать домашнюю выпечку с добавлением льняной муки.

Еще интереснее ситуация с фиотэстрогенами сои. Для того чтобы природные соединения изофлавонов сои приобрели эстрогеноподобные свойства, они должны подвергнуться обработке ферментами, вырабатываемыми кишечной микрофлорой. У жителей Азии, для которых соевые продукты — часть нормального рациона (ежедневно употребляется 18–63 мг соевых изофлавонов[2]), соответствующая микрофлора развита в достаточной степени, чтобы употребление природных фитоэстрогенов давало положительный эффект. Европейцы же получают с пищей менее 2 мг изофлавонов (!) — разумеется, необходимой для их адекватного усвоения микрофлоры у жителей Европы попросту нет. Поэтому женщинам, не употреблявшим всю жизнь блюда традиционной азиатской кухни, для поддержки синтеза коллагена лучше использовать не растения с фитоэстрогенными свойствами, а биологически активные добавки со стандартизированным содержанием очищенных изофлавонов в легкоусвояемой организмом форме.

Итак, коллаген — один из главных белков организма, он необходим для здоровья и красоты. Поддержать его естественную выработку даже в зрелые годы можно с помощью правильного питания, включающего все необходимые макро- и микронутриенты, ведения здорового образа жизни и приема витаминно-минеральных комплексов, содержащих фитоэстрогены.

Источник

Качественные коллагеновые волокна — одна из
основных составляющих здоровой кожи. Поэтому
большое количество косметологических методов
направлено на восстановление ее коллагенового каркаса.
Как витамины и микроэлементы могут влиять на синтез
коллагена? И почему для достижения стойкого эффекта
необходимо учитывать их количественный состав
в организме?

Ежегодно создаются новые методики и препараты для улучшения синтеза коллагена с целью профилактики инволюционных процессов в организме и уменьшения выраженности возрастных изменений.
Но за стремлением повлиять на коллагеногенез извне порой забывают о тех веществах, без достаточного количества которых в самом
организме синтез коллагена крайне затруднен. Никто не будет отрицать, что продукция этого жизненно важного белка зависит от гормонов, гормоны, в свою очередь, от присутствия
металлов, усвоение металлов — от витаминов; и эту цепочку можно продолжать долго, тем более что она замкнутая. Осветить все
нюансы в одной статье не представляется возможным, но сделать шаг навстречу пониманию некоторых процессов — в наших силах.
Синтез и процессинг (созревание) коллагена включает в себя несколько этапов:
• транскрипция генов, кодирующих коллагены, в которой участвуют десятки магнийи кальцийзависимых белков;
• синтез препроколлагена на рибосоме, поддерживаемый магний- и кальцийзависимыми белками;
• транспорт цепи препроколлагена в эндоплазматический ретикулум посредством сигнального пептида на N-концевом участке аминокислотной цепи;
• удаление сигнального пептида в препроколлагене посредством фермента пептидазы;
• гидроксилирование аминокислотных остатков пролина с участием Fe2+ и аскорбат-аниона в качестве кофакторов;
• гликозилирование моносахаридами аминокислотных остатков лизина в препроколлагене в присутствии ферментов, содержащих ионы марганца;
• сборка тройной спирали проколлагена из 3 аминокислотных цепей препроколлагена;
• внесение необходимых конформационных изменений в проколлаген посредством изомеризации остатков цистеина и пролина;
• упаковка проколлагена в транспортный везикул, перенос во внеклеточный матрикс;
• вне клетки модификация молекулы проколлагена с помощью протеиназ проколлагена, нуждающихся в ионах Zn2+ как кофакторе;
• формирование коллагеновых фибрилл из тропоколлагена посредством лизилоксидазы, кофакторами которой являются ионы
Cu+ и тирозил-хинон (рис. 1) [1].
Всем известно об участии магния и кальция в синтезе соединительной ткани и коллагена, но о железе, цинке, меди, витаминах С и D часто забывают. Именно эти кофакторы рассмотрим в статье.

Железо

Железодефицитная анемия в той или иной степени присутствует у 40–60 % женщин детородного возраста по всему миру [2, 26]. И это при том, что железо — один из важнейших микроэлементов, необходимых для нормального функционирования биологических систем организма. Оно требуется для осуществления функции дыхания, кроветворения, участвует в иммунобиологических и окислительно-восстановительных реакциях.
Причины дефицита железа:
• недостаточное поступление в организм железа из-за нарушения режима питания (например, при вегетарианской диете);
• снижение всасываемости железа в кишечнике (рис. 3);
• нарушение регуляции обмена витамина С;
• избыточное поступление в организм фосфатов, оксалатов, кальция, цинка, витамина Е;
• поступление в организм железосвязывающих веществ;
• усиленное расходование железа (в периоды интенсивного роста и беременности);
• потери железа, связанные с травмами, кровопотерями во время операций, обильными менструациями, язвенными болезнями, донорством, занятиями спортом;
• нарушение функции щитовидной железы;
• различные системные и опухолевые заболевания [21].
Учитывая высокую распространенность дефицита железа в популяции, сложно говорить о нормальном синтезе коллагена при таких состояниях.

Цинк

Цинк — единственный металл, представленный в небелковой части ферментов каждого класса, и никаким другим металлом цинк не может быть заменен. Несмотря на малую концентрацию цинка в крови, стабильные связи с макромолекулами делают его доступным для всех тканей организма, что в дальнейшем позволяет удовлетворять потребности в нем белков и ферментов, выполняющих различные биологические функции [28].
Распространенность дефицита цинка в мире не менее значительная, чем железа и витамина С, и составляет до 60% [29].
Для транспорта эритроцитами кислорода и углекислого газа абсолютно необходим цинк, и большая часть цинка крови содержится именно в эритроцитах в составе цинковых металлоферментов — карбоангидраз. Карбоангидразы катализируют превращения углекислого газа в угольную кислоту (угольная кислота участвует в поддержании pH крови в физиологическом диапазоне (7,25–7,35). В капиллярах легких эти процессы идут в обратном направлении: угольная кислота распадается на углекислый газ и воду, и углекислый газ удаляется наружу [18].
Без нормального дыхания ни одна клетка не способна осуществлять свои функции.

Медь

В мире распространенность дефицита меди в организме, приводящего, наряду с железом, к анемии, составляет до 30%. А ведь этот микроэлемент крайне необходим для нормальной физиологии организма.
Если говорить о коже, то медь играет ключевую роль в ангиогенезе, синтезе и стабилизации белков внеклеточного матрикса [3].
В физиологически значимых концентрациях (2 мг — средняя суточная потребность) медь ускоряет заживление ран [16].
Ионы меди, которые являются кофакторами лизилоксидазы, принимают участие в последнем этапе синтеза коллагена. Медь имеет важное значение для формирования внутри- и межмолекулярных поперечных связей в коллагене, а соответственно, и прочности коллагеновых и эластиновых фибрилл [8, 13,
15]. Недостаток меди ухудшает формирование сшивок коллагена и приводит к тяжелой
патологии костей, легких и сердечно-сосудистой системы [12].
Компенсация дефицита этого микроэлемента, бесспорно, улучшает синтез коллагена, в том числе в коже (рис. 4) [7, 10].

Аскорбиновая кислота (витамин С)

Аскорбиновая кислота играет в организме фундаментальную роль — нет фактически ни одного физиологического процесса, в котором бы она не принимала участия.

Роль витамина С в организме
Аскорбиновая кислота в организме человека оказывает влияние на множество важнейших биологических процессов:
• образование кортикостероидов (при стрессе в несколько раз возрастает уровень потребления витамина С тканями и органами) [20];
• обмен тирозина (влияние на обмен гормонов щитовидной железы) [22];
• трансформация дофамина в норадреналин [25];
• превращение токсичных соединений ванадия в безвредные [23];
• превращение фолиевой кислоты в ее активную форму — тетрагидрофолат [27];
• активация мРНК ацетилхолинового рецептора [20];
• образование активных форм витамина D (транспортной формы [25(OH)D] — в печени и активной гормональной формы [1,25(ОН)2D] — в почках), что служит основным фактором профилактики остеопороза [20];
• потенцирование всасывания железа [24].
Распространенность дефицита витамина С в мире по разным данным составляет 20–40% [14, 15].
В последнее время много исследований посвящено аскорбиновой кислоте и ее биодоступности для кожи [9]. При недостатке витамина С в организме его нанесение на кожу не будет иметь ожидаемого эффекта, так как не сможет восполнить нутритивный дефицит. В ходе проведенных исследований выяснилось, что витамин С ускоряет заживление ран, участвует в активизации синтеза коллагена I типа (рис. 5) и снижении параметров
окислительного стресса. Никаких значимых побочных эффектов при добавлении витамина С в питание в ходе проведенных исследований выявлено не было [5, 6].

Синтез коллагена зависит от гормонов, гормоны, в свою очередь, от присутствия металлов, усвоение металлов — от витаминов, и эту цепочку можно продолжать долго, тем более что она замкнутая.

Витамин D

Распространенность дефицита витамина D в российской популяции составляет более 90% (в мире 50–60%) [19]. Этот витамин стимулирует увеличение синтеза секретируемых белков TGF-β (регулируют деление
и дифференцировку различных типов клеток, включая фибробласты и кератиноциты) и их связывание с рецепторами на мембране клеток. Поэтому при его дефиците происходит нарушение активности сигнальных каскадов TGF-β, что ухудшает заживление кожи после любой травмы (включая косметологические манипуляции). Например, во время термолифтинга часть коллагеновых волокон дермы сжимается и уменьшается в объеме. Это приводит к повышению зернистости базального слоя и при достаточном количестве витамина D создает благоприятные условия для воздействия его активных форм на экспрессию TGF-β1, который и способствует обновлению соединительной ткани [11].

Выводы

Мы кратко обсудили лишь некоторые кофакторы, участвующие в синтезе коллагена. Но даже этот незначительный пласт информации позволяет судить о зависимости синтеза коллагена от нутритивного статуса организма, чем не следует пренебрегать, решая многие эстетические задачи. Изменение синтеза
коллагена происходит постепенно и усугубляется нутритивным дефицитом [19].

Источник

Фибриллярные белки и коллаген.

Что такое фибриллярные белки? Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру.

Нитевидная структура — хорошо. Почему? Да из нитей легко создать или сшить гибкие, подвижные, эластичные, прочные ткани, как кожа, ногти, связки, сухожилия и т.д. Как одежда, отличается по свойствам друг от друга в первую очередь составом ткани, так и ткани человеческого тела, отличаются составом фибриллярных белков.

К фибриллярным белкам относят:

  • коллаген, эластин, кератин, выполняющие в организме человека структурную функцию;
  • миозин, участвующий в мышечном сокращении;
  • фибрин — белок свёртывающей системы крови.

Сегодня говорим о коллагене, т.к. он превалирует. В коже его порядка 70%.

Итак, коллаген

Коллаген содержится практически везде. Не только в суставах и коже.

Кожа. Она состоит из волокон коллагена и эластина и основной ткани – матрицы. Коллаген составляет около 75 % сухой массы, а эластин – около 4 %. Эластин растягивается очень сильно (до 200–300 %), примерно как резина. Коллаген может растягиваться до 10 %, что соответствует капроновому волокну.

Мышцы. В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Механическое поведение скелетной мышцы следующее: при быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается. При большей деформации происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон.

Это основа для других тканей и органов: оболочек, кожи, хрящей, костей, связок мышц, сосудов и даже нервной системы.

Коллаген считается самым распространённым видом белка у млекопитающих, составляющий от 25% до 35% белков во всём теле. Коллагены есть везде.

Дефицит коллагена!

Понятно, что большая часть коллагена находиться в суставах.

Факторов разрушения коллагена много:

  • cо стороны хрящевой ткани — дегенерация межпозвонковых дисков (остеохондроз), хруст, грыжи, скрежет, ухудшение состояния суставных хрящей (артрозы), проблемы с бронхами (бронхит, бронхоэктазы). Однако нужно заметить, что коллаген больше отвечает не за хруст, а за боли. За состояние самих суставов. А синовиальная жидкость, т.к. смазка суставов — это несколько другой вопрос;
  • со стороны кожи — ранние и глубокие морщины;
  • со стороны сосудистой стенки ее истончение и, как следствие повышение угрозы разрывов сосудов, аневризм и увеличения количества атеросклеротических бляшек, которые появляются в ответ на нарушение целостности сосудистой стенки;
  • со стороны кишечника — запоры и проблемы с пищеварением;
  • со стороны хрусталика — ухудшение зрения.

Но что мы можем сделать при нарушении его синтеза, при метаболическом дефиците?

Усвоение коллагена

Знаете ли вы, как переваривается белок?

Как известно, белок состоит из кирпичиков-аминокислот, которые соединены между собой пептидной связью.
Очень известная аналогия, и очень удачная. Аналогия с кирпичиками. Любой белок, который мы съедим, будет разрушен до кирпичиков (аминокислот). И только потом наше тело, используя кирпичики, будет строить свой собственный уникальный белок.

Деградация белка катализируется протеиназами: в желудке — пепсинами, а в тонком кишечнике — трипсином, химотрипсином и эластазой. Образующиеся при этом пептиды далее гидролизуются различными пептидазами до аминокислот.

Любой продукт белковой природы, что мы съедим, всегда будет разрушен до аминокислот. И всосется в тонком кишечнике только в виде аминокислот. Иногда в виде 2ух или 3ех связанных между собой аминокислот. Т.е. ди и трипептидов. Пептиды всасываются в виде ди- и трипептидов путем пассивного переноса или активного транспорта с участием переносчиков.

Телу все равно, что вы съели, будь то коллаген или курица. Организм обязан стереть чужеродную генетическую информацию и превратить белок в строительный аминокислотный материал. А если по какой-либо причине белок, что мы съели, не будет нормально переварен и попадет в кровоток, то последствия будут в виде аллергии и пр., т.к. тело будет распознавать непереваренный белок как чужеродный.

Любой белок, принимаемый перорально, будет разрушен до составных элементов. Не стоит тешить надежду на то, что коллаген из пищи как-либо встроится в наш собственный.

Любую белковую пищу нужно рассматривать ТОЛЬКО с точки зрения аминокислотного состава. И, только. Только аминокислоты и их пропорции могут на нас влиять.

Аминокислотный состав коллагена

Коллаген скуден по аминокислотному составу, и считается неполноценным белком, как и продукт переработки коллагена — желатин, о котором поговорим чуть ниже.
Коллаген имеет необычный аминокислотный состав: 1/3, или 33% всего коллагена составляет глицин.
Глицин- это заменимая аминокислота, значит, организм может ее вырабатывать сам без всяких проблем.

Пролина там тоже очень много. Это тоже, заменимая аминокислота.

Необходимо сказать, что есть модификации этих аминокислот, такие как гидроксипролин и гидроксилизин.

В составе коллагена есть еще аланин. И он тоже является заменимой аминокислотой.

Так же есть аргинин, условно незаменимая алифатическая аминокислота. Все остальные незаменимые аминокислоты, % которых хоть как-то можно назвать весомым в коллагене — это аминокислота лизин.

Самое главное в коллагене конечно же это лизин, т.к. это единственная из всех незаменимая. Значит, коллаген можно рассматривать как источник лизина, что хорошо.

Но, увы, даже в самом очищенном коллагене сух, лизина даже меньше, чем в обычном сывороточном протеине.

Поэтому, рассматривать коллаген как источник незаменимых аминокислот для своих суставов нельзя!

В коллагене много заменимых аминокислот. Их реально там много.
Берем не качеством, а количеством:

  • Потенциальная польза в коллагене заключается именно в заменимых аминокислотах и в их ГИПЕРДОЗАХ, ибо в коллагене того же самого глицина аж 33 г на 100 г.
  • Еще в коллагене есть особые 2 аминокислоты: гидроксипролин и гидроксилизин (модифицированные).

Производители коллагена уверяют, что именно эти 2 редкие аминокислоты оказывают незаменимую пользу нашей соединительной ткани. Так ли это?

Как происходит синтез коллагена?

Поскольку коллаген не существует без гидроксипролина и гидроксилизина, поедая эти аминокислоты, мы облегчаем жизнь своему коллагену.
ОН будет строиться быстрее, т.к. не нужно эти аминокислоты создавать. Это производные пролина, о котором мы говорили и лизина, о котором мы тоже упомянули.

ЗВУЧИТ РЕАЛЬНО КРУТО, да? Я, сперва, сам так подумал. Однако это НЕПРАВДА. К большому сожалению. Они никак не помогут нам при построении своего собственного коллагена. Почему? Очень просто.

Во-первых, cначала строятся нити без всяких там гидроксиаминокислот. Т.е. у нас в цепи нормальный пролин. И, только потом уже на готовой цепи подвешивают гидроксигруппу к пролину.

Синтез коллагена — сложный ферментативный многостадийный процесс, который должен быть обеспечен достаточным количеством витаминов и минеральных элементов.

Синтез протекает в фибробласте и ряд стадий вне фибробласта. Важный момент в синтезе — реакции гидроксилирования, которые открывают путь дальнейшим модификациям, необходимым для созревания коллагена. Катализируют реакции гидроксилирования специфические ферменты.

Так, образование 4-оксипролина  катализирует пролингидроксилаза, в активном центре которой находится ЖЕЛЕЗО.
Фермент активен в том случае, если железо находится в двухвалентной форме, что обеспечивается полноценным ВИТАМИНОМ С.

Полноценность Витамину С придают БИОФЛАВОНОИДЫ: гесперидин, рутин, кверцетин, кемпферол и др. Это не только аскорбиновая кислота!

Дефицит Витамина С нарушает процесс гидроксилирования, что влияет на дальнейшие стадии синтеза коллагена:  гликозилирование, отщепление N- и С-концевых пептидов и др. В результате синтезируется аномальный коллаген, более рыхлый. Эти изменения лежат в основе развития цинги.

Внеклеточный этап — модификация молекул проколлагена.

В межклеточном пространстве при участии протеолитических ферментов от молекулы проколлагена отщепляются N- и С-концевые пептиды и освобождается тройная спираль коллагена (тропоколлагена).

Далее происходит процесс самосборки коллагеновых фибрилл, фиксированных межмолекулярными ковалентными связями (сшивками) — необходим кислород, сера и специфический фермент лизилоксидаза…

Внеклеточное «дозревание» коллагена. «Сшивание» коллагеновых фибрил — необходимы Сера, кислород и
Фермент лизилоксидаза.

Особенностью этого фермента является присутствие Cu2+ в активном центре. Без меди невозможно дозревания коллагена.

Для синтеза коллагена необходимы Кальций, Магний, Фосфор, Железо, Медь, Витамин Д3 (Остео плюс), аминокислоты  (в том числе незаменимые, для эффективной работы ферментов), антиоксиданты, достаточное количество АТФ, полноценный Витамин С, Сера, Фосфолипиды, кислород, Омега-3 кислоты.

Не слабо, правда!

Эластин как белок прекращает выработку ферментов в человеческом организме в 14 лет, а коллаген — в 21—25, после чего кожные покровы только теряют эти белки и кожа стареет.

Без СЕРЫ нет пространственной конфигурации белков. Нет жизни, нет способа существования белковых тел.

Любой белок, независимо от того, какую функцию он несёт, это не просто цепочка, состоящая из аминокислот. Так же, как у каждого из нас есть своё определённое лицо, каждый белок — это определённая структура. Один белок имеет одну структуру, другой — другую.

Эта структура прочная, потому что она объединена, прежде всего, ковалентными химическими связями (осуществляются парой электронов, общих для двух атомов). И обязательно образуются  такие S-S-мостики (СЕРА).Когда варим, пережариваем белок, то эти S-S-связи рвутся, происходит так называемая денатурация, порча белков.

Когда образуются S-S-связи, тогда и только тогда появляется пространственная конфигурация. Эластин и коллаген — невероятно зависят от наличия органической серы.

Т.е. организм не использует вот эти хваленые гидрокси аминокислоты, что мы могли получить из сьеденного колагена. ОН ВСЕ ПРОДУЦИРУЕТ ВНОВЬ! САМ!

Во вторых, не существует РНК, которая могла бы акцептировать гидроксипролин или гидроксилизин и далее включать их в растущую полипептидную цепь.

Делали исследование. Кормили крыс радиоактивным гидроксипролином и гидроксилизином. Смотрели, будет ли коллаген из этих радиокативных аминокислот состоять. Конечно же НЕТ!

Это еще в 1954 году провели эксперемент. А продавцы коллагена до сих пор настаивают, что помогает. Было бы весело, если не было бы грустно.

Если мы едим гидроксиаминокислоты, то все они будут все равно приведены до состояния нормальных аминокислот и только потом будут использоваться.

И никак иначе.

Синтез коллагена очень зависим от слаженной работы гормонов щитовидной железы и отсутствия инсулинорезистентности!

Вывод: коллаген по аминокислотам ценен только пролином, глицином, аланином, аргинином — т.е., заменимыми аминокислотами, которых в коллагене действительно много.

Как лечебный препарат для восстановления суставов, связок, омоложения кожи — малоэффективен.

Как дополнительный источник заменимых аминокислот — имеет место быть.

У спортсменов. Людей без дефицита полноценных белков в еде, в принципе нет потребности в коллагене, как суплементе.

Гораздо интереснее и правильнее восполнять дефицит нутриентов, о которых мы говорили. Обеспечить здоровое всасывание их в кишечнике — ежегодная реабилитация ЖКТ. Создать условия для синтеза собственного коллагена и гликоаминогликанов (о них ещё поговорим).

Что такое желатин и что такое гидролизованный коллаген?

Желатин — это коллаген, который был подвержен разрушению. Усваивается легче, чем просто сырой материал.

Гидролизованный коллаген.
Это желатин, который еще несколько раз обработали. Он еще больше разрушился и еще легче переваривается и расщепляется до аминокислот. В этом вся разница, в обработке.

Желатин — средняя степень обработки.

Гидролизованный коллаген — высокая степень обработки.

Переваривание и всасывание зависит от обработки коллагена, т.е. от его биодоступности.

Желатин и гормон роста. (Бонус ? для спортсменов)

Исследование:
Лучшим источником аргинина из всех белков является желатин и соя. Выяснилось, что потребление желатина в пищу существенно повышает секрецию гормона роста после приема. Выше, чем все другие белки. Соя на 2 месте. Считается, что это все благодаря аргинину. Но,через 2 часа! после употребления. Дозировка. Вес 80кг — 48гр. желатина.

Из лекции врача-нутрициолога Аркадия Бибикова.

Источник