Какой витамин участвует в реакциях клеточного дыхания

Какой витамин участвует в реакциях клеточного дыхания thumbnail

Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

  • в цитоплазме – гликолиз,

  • в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,

  • на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2

CH3CHO + НАД · H2 → CH3CH2OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Источник

Сдам Сам

Витамин Физиологическое действие и гиповитаминозы Источники (пищевые продукты) Суточная норма
А Влияет на зрение, рост и развитие. Участвует в образовании зрительного пигмента. При авитаминозе — нарушение сумеречного зрения (куриная слепота), повреждение роговицы глаз, сухость эпителия и его ороговение Рыбий жир, сливочное масло, другие животные жиры, мясо, печень, яйца, молоко. Источники каротина (из которого образуется витамин А) — морковь, абрикосы, крапива, помидоры 1,5 мг
B1 Участвует в обмене углеводов, жиров, белков, в проведении нервного импульса. При недостатке — расстройство двигательной активности, параличи, нарушение работы желудочно-кишечного тракта Зерновые и бобовые культуры, печень, куриный желток 1,5–2 мг
B2 Участвует в клеточном дыхании. При недостатке — помутнение хрусталика, поражение слизистой оболочки рта Пивные дрожжи, печень, сырые яйца, зерновые и бобовые культуры, томаты 2–3 мг
В6 Участвует в обмене белков, синтезе ферментов, обеспечивающих обмен аминокислот, влияет на кроветворение. При недостатке — заболевание кожи, анемия, судороги Печень, почки, куриный желток, зерновые и бобовые. Синтезируется микрофлорой кишечника 1,5–3 мг
B12 Всасывается, соединившись с белком желудочного сока. При недостатке — анемия Печень, почки, мясо. Синтезируется микрофлорой кишечника 2 мкг
С Участвует в окислительно-восстановительных процессах. Увеличивает устойчивость к инфекциям. При недостатке — цинга (поражение стенок кровеносных сосудов, развитие мелких кровоизлияний в коже, кровоточивость дёсен), снижение сопротивляемости организма к инфекциям Шиповник, хвоя, незрелые грецкие орехи, зелёный лук, чёрная смородина, картофель, капуста, цитрусовые 50–100 мг
D Регулирует обмен кальция и фосфора. При недостатке — в детском возрасте развивается рахит (нарушение формирования костей) Рыбий жир, яичный желток, печень. Образуется в коже под влиянием ультрафиолетовых лучей 2,5 мкг
Е Обладает противоокислительным действием на внутриклеточные липиды. При недостатке — развивается дистрофия скелетных мышц, ослабляется половая функция Растительное масло, салат 10–15 мг
К Участвует в синтезе протромбина, способствует нормальной свёртываемости крови. При недостатке — понижается свёртываемость крови Шпинат, салат, капуста, томаты, морковь. Синтезируется микрофлорой кишечника 0,2–0,3 мг
РР Участвует в клеточном дыхании, нормализует функции желудочнокишечного тракта, печени. При недостатке — развивается пеллагра (воспаление кожи, понос, слабоумие) Дрожжи, отруби, пшеница, рис, ячмень, арахис. Может синтезироваться из триптофана 15 мг
Читайте также:  При псориазе какие витамины колят

ДЫХАНИЕ

Дыхание — совокупность процессов, обеспечивающих поступление кислорода, использование его в окислении органических веществ и удаление углекислого газа и некоторых других веществ.
Человек дышит, поглощая из атмосферного воздуха кислород и выделяя в него углекислый газ. Каждой клетке для жизнедеятельности нужна энергия. Источник этой энергии — распад и окисление органических веществ, входящих в состав клетки. Белки, жиры, углеводы, вступая в химические реакции с кислородом, окисляются («сгорают»). При этом происходит распад молекул и освобождается заключенная в них внутренняя энергия. Без кислорода невозможны обменные превращения веществ в организме.
Запасов кислорода в организме человека и животных нет. Его непрерывное поступление в организм обеспечивает система органов дыхания. Накопление значительного количества углекислого газа в результате обмена веществ вредно для организма. Удаление из организма СО2 также осуществляется органами дыхания.
Функция дыхательной системы — снабжение крови достаточным количеством кислорода и удаление из неё углекислого газа.
Различают три этапа дыхания: внешнее (лёгочное) дыхание — обмен газов в лёгких между организмом и средой; транспорт газов кровью от лёгких к тканям организма; тканевое дыхание — газообмен в тканях и биологическое окисление в митохондриях.

Внешнее дыхание

Внешнее дыхание обеспечивается системой органов дыхания (рис. 12.10), которая состоит из лёгких (где совершается газообмен между вдыхаемым воздухом и кровью) и дыхательных (воздухоносных) путей (по которым проходит вдыхаемый и выдыхаемый воздух).
Воздухоносные (дыхательные) пути включают носовую полость, носоглотку, гортань, трахею и бронхи. Дыхательные пути делятся на верхние (носовая полость, носоглотка, гортань) и нижние (трахея и бронхи). Они имеют твёрдый скелет, представленный костями и хрящами, а изнутри выстланы слизистой оболочкой, снабжённой мерцательным эпителием. Функции дыхательных путей: обогрев и увлажнение воздуха, защита от инфекций и пыли.

Полость носа поделена перегородкой на две половины. Она сообщается с наружной средой при помощи ноздрей, а сзади — с глоткой посредством хоан. Слизистая оболочка носовой полости имеет большое количество кровеносных сосудов. Проходящая по ним кровь согревает воздух. Железы слизистой выделяют слизь, увлажняющую стенки носовой полости и снижающую жизнедеятельность бактерий. На поверхности слизистой находятся лейкоциты, уничтожающие большое количество бактерий. Мерцательный эпителий слизистой задерживает и выводит наружу пыль. При раздражении ресничек носовых полостей возникает рефлекс чихания. Таким образом, в носовой полости воздух согревается, обеззараживается, увлажняется и очищается от пыли. В слизистой оболочке верхней части носовой полости имеются чувствительные обонятельные клетки, образующие орган обоняния. Из носовой полости воздух поступает в носоглотку, а оттуда в гортань.
Гортань образована несколькими хрящами: щитовидный хрящ (защищает гортань спереди), хрящевой надгортанник(защищает дыхательные пути при проглатывании пищи). Гортань состоит из двух полостей, которые сообщаются через узкую голосовую щель. Края голосовой щели образованы голосовыми связками. При выдыхании воздуха через сомкнутые голосовые связки происходит их вибрация, сопровождающаяся возникновением звука. Окончательное формирование звуков речи происходит при помощи языка, мягкого нёба и губ. При раздражении ресничек гортани возникает рефлекс кашля. Из гортани воздух поступает в трахею.
Трахея образована 16–20 неполными хрящевыми кольцами, не позволяющими ей спадаться, а задняя стенка трахеи мягкая и содержит гладкие мышцы. Благодаря этому пища свободно проходит по пищеводу, который лежит позади трахеи.
В нижней части трахея делится на два главных бронха (правый и левый), которые проникают в лёгкие. В лёгких главные бронхи многократно ветвятся на бронхи 1-го, 2-го и т. д. порядков, образуя бронхиальное дерево. Бронхи 8-го порядка называют дольковыми. Они разветвляются на концевые бронхиолы, а те — на дыхательные бронхиолы, которые образуют альвеолярные мешочки, состоящие из альвеол. Альвеолы— лёгочные пузырьки, имеющие форму полушария диаметром 0,2–0,3 мм. Их стенки состоят из однослойного эпителия и покрыты сетью капилляров. Через стенки альвеол и капилляров происходит обмен газами: из воздуха в кровь переходит кислород, а из крови в альвеолы поступает СО2 и пары воды.
Лёгкие — крупные парные органы конусообразной формы, расположенные в грудной клетке. Правое лёгкое состоит из трёх долей, левое — из двух. В каждое лёгкое проходят главный бронх и лёгочная артерия, а выходят две лёгочные вены. Снаружи лёгкие покрыты лёгочной плеврой. Щель между оболочкой грудной полости и плеврой (плевральная полость) заполнена плевральной жидкостью, которая уменьшает трение лёгких о стенки грудной клетки. Давление в плевральной полости меньше атмосферного на 9 мм рт. ст. и составляет около 751 мм рт. ст.

Читайте также:  Витамин в это какие препараты

Сосуды

Стенки артерий и вен состоят из трёх слоёв (рис. 12.13): внутренний (тонкий слой эпителиальных клеток), средний (толстый слой эластичных волокон и клеток гладкой мышечной ткани) и наружный (рыхлая соединительная ткань и нервные волокна). Капилляры состоят из одного слоя эпителиальных клеток.

Артерии — сосуды, по которым кровь течёт от сердца к органам и тканям. Стенки состоят из трёх слоёв. Различают следующие типы артерий: артерии эластического типа (ближайшие к сердцу крупные сосуды), артерии мышечного типа (средние и мелкие артерии, которые оказывают сопротивление кровотоку и тем самым регулируют приток крови к органу) и артериолы (последние разветвления артерии, переходящие в капилляры).
Капилляры — тонкие сосуды, в которых происходит обмен жидкостями, питательными веществами и газами между кровью и тканями. Их стенка состоит из одного слоя эпителиальных клеток. Длина всех капилляров тела человека — около 100 000 км. В местах перехода артерий в капилляры имеются скопления мышечных клеток, которые регулируют просвет сосудов. В состоянии покоя у человека открыто 20–30 % капилляров.
Движение жидкости через капиллярную стенку происходит в результате разности гидростатического давления крови и гидростатического давления окружающей ткани, а также под действием разности осмотического давления крови и межклеточной жидкости. В артериальном конце капилляра растворённые в крови вещества фильтруются в тканевую жидкость. В венозном его конце давление крови уменьшается, осмотическое давление белков плазмы способствует поступлению жидкости и продуктов метаболизма обратно в капилляры.
Вены — сосуды, по которым кровь течёт от органов к сердцу. Стенки их (как и у артерий) состоят из трёх слоёв, но они тоньше и беднее эластическими волокнами. Поэтому вены менее упруги. Большинство вен снабжено клапанами, которые препятствуют обратному току крови.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

©2015- 2020 zdamsam.ru Размещенные материалы защищены законодательством РФ.

Источник

Витамин Е восстанавливает перекиси липидов, которые нарушают функции мембран клеток, могут повреждать ДНК, выступая в качестве мутагенов и канцерогенов. Он оказывает прямое стабилизирующее действие на мембраны клеток, например, эритроцитов, предотвращая гемолиз.

Витамин Е играет существенную роль в процессах клеточного дыхания и метаболизма нуклеиновых кислот в каждой клетке организма, влияет на синтез белка, регулирует процессы в нервной и мышечной ткани. Токоферол оказывает влияние на синтез простоциклинов и метаболизм эйкозаноидов, препятствуя возникновению воспалительных заболеваний и тромбообразованию. Витамин Е ингибирует окисление холестерина в составе липопротеинов, замедляя развитие атеросклероза.

Мощное антиокислительное (антирадикальное) действие как антиоксиданта, предотвращение гемолиза эритроцитов

Действие на репродуктивную систему: обеспечение нормальной репродуктивной функции у мужчин и женщин, нормального течения беременности, усиление действия эстрогена

Обмен белка: защитное действие на белки, тормозящее действие на протеазы (трипсин, папаин), стимуляция синтеза нуклеопротеидов

Обмен липидов: предотвращение перекисного окисления липидов, замедление окислительного разрушения каротиноидов и витамина А, увеличение запасов жира в организме, снижение уровня холестерина

Обмен углеводов: регулирует глюконеогенез, стимулирует образование гликогена

Мышечная система: регуляция метаболизма мышечной ткани (скелетной мускулатуры, миокарда, мышц матки), предотвращение миодистрофий, поражения сердечной мышцы

Эндокринная система: регуляция и стимуляция выработки гормонов гипофиза, регуляция выработки гонадотропина и лютенизирующего гормона, влияние на выработку тиреотропного гормона и АКТГ

Действие на нервную систему

Действие на печень: профилактика жировой дистрофии и некроза печени, усиление детоксикации ксенобиотиков

Действие на почки: предотвращение нефроза
Витамин К
Витамин К необходим для активации в печени протромбина (фактора II) и пяти других (факторы VII, IX и X белки С и S) белков, участвующих в процессе свертывания крови. Витамин К участвует в качестве катализатора в биосинтезе ряда белков, содержащихся в плазме крови, в почках, костях и зубах. В кости вместе с витамином D он принимает участие в синтезе белка остеокальцина.

Действие на свертывающую систему крови: участие в биосинтезе протромбина и других факторов свертывающей системы крови, снижает сосудистую проницаемость, предотвращает кровоизлияния

Действие на печень: усиливает образование желчи

Участие в процессах клеточного дыхания и фосфорилирования.
Витамин B1 — Тиамин
В своей биологически активной форме (тиамин-дифосфат) витамин B1 играет важную роль в ключевых реакциях гидролиза жиров и углеводов, связанных с выделением энергии. Тиамин принимает участие в работе нервной системы — в процессах генерации нервных импульсов и регенерации периферических нервов.

Обмен углеводов: карбоксилирование и декарбоксилирование пирувата (ко-карбоксилаза), нормализует уровень сахара в крови, усиление гипогликемического действия инсулина, инсулин увеличивает содержание ко-карбоксилазы в крови

Обмен липидов: стимулирует переход углеводов в липиды и белков в липиды (необходимы рибофлавин, пантотенол и пиридоксин), повышает содержание холестерина в крови

Обмен белка: торможение распада белка, препятствует окислительному расщеплению нуклеотидов с образованием мочевой кислоты, участие в переаминировании аминокислот

Иммунитет: стимуляция иммунитета, профилактика инфекционных заболеваний, повышение сопротивляемости организма

Сердечно-сосудистая система: повышает артериальное давление, внутривенное введение тиамина расширяет венечные сосуды

Пищеварение: увеличение желудочной секреции и ускорение эвакуации содержимого (торможение желудочной секреции, секреции слюнных желез и снижение желудочной перистальтики при B1-авитаминозе), усиление детоксикационной функции печени

Эндокринная система: инактивация действия тироксина, стимуляция образование тиреотропного гормона, регуляция системы гипофиз — надпочечники, усиление и удлинение действия адреналина, инактивация эстрогенов

Читайте также:  Какие витамины выдерживают термическую обработку

Нервная система: регуляция деятельности коры больших полушарий, обеспечение трофической функции ЦНС, повышает содержание ацетилхолина.

Витамин B2 — Рибофлавин
В форме коферментов флавинмононуклеотида и флавиндинуклеотида рибофлавин входит в состав множества ферментов (флавопротеинов) окислительного и восстановительного действия. Некоторые флавопротеины участвуют в окислительных реакция в составе дыхательной цепи, связанных с выделением энергии в клетке. Тем самым он участвует в метаболизме белков, жиров и углеводов. Рибофлавин принимает участие в работе зрительного анализатора. Он участвует в метаболизме совместно с другими витаминами группы В: ниацином, пиридоксином и фолиевой кислотой. По этой причине витамины группы В целесообразно назначать в комплексе. Кроме того, рибофлавин играет важную роль в выработке гормонов коры надпочечников.

Участие в окислительно-восстановительных реакциях и клеточном дыхании (все рибофлавиновые коферменты являются катализаторами окислительных реакций), отчетливое снижение основного обмена

Обмен углеводов: регуляция углеводного обмена (пища богатая углеводами повышает потребность в рибофлавине), нормализует высокий уровень сахара, увеличивает секрецию инсулина, увеличивает содержание гликогена

Обмен белка: участие в усвоении и синтезе аминокислот, окислительное дезаминирование аминокислот, повышение усвоения белка, низкий уровень белка в диете снижает усвоение рибофлавина

Обмен липидов: участие в усвоении и биосинтезе липидов (пища богатая жирами повышает потребность в рибофлавине), усиливает действие тиамина и активирует образование липидов из белка

Пищеварение: участие в образовании соляной кислоты и повышение ее секреции, улучшает метаболическую функцию печени, снижает содержание билирубина в крови при гепатите

Н ервная система: участие в регуляции функции нервной системы, снижает возбудимость нервных центров, регуляция зрительной функции (улучшает остроту зрения и, наряду с витамином А, сумеречное зрение, при дефиците витамина нарушения зрения наступают ранее других признаков рибофлавиновой недостаточности)

Сердечно-сосудистая система: уменьшает тахикардию, понижает артериальное давление, увеличение числа эритроцитов ретикулоцитов и уровня гемоглобина при анемии, профилактика и лечение анемии

Иммунитет: повышение резистентности к инфекционным заболеваниям

Антигистаминный эффект

Ниацин — Никотиновая кислота
Ниацин участвует в реакциях, связанных с освобождением энергии в тканях при гидролизе углеводов, жиров и белков. Важен для работы мышечной системы, состояния кожи, желудочно-кишечного тракта, роста организма. Участвует в синтезе отдельных гормонов

Участие в окислительно-восстановительных процессах

Участие в обмене углеводов: снижение содержание сахара в крови, торможение адреналиновой гипергликемии, уменьшение уровня пирувата в крови, регуляция углеводного обмена в ЦНС

Действие на сосуды: сосудорасширяющее действие на периферические капилляры и артериолы, действие на венечное кровообращение — нормальные и средние дозы — сосудорасширяющий эффект, высокие дозы — сужают венечные сосуды, ускорение капиллярного кровообращения, повышение венозного давления, ускорение ритма сердечных сокращений

Действие на желудок: повышение кислотности, ускорение моторики желудка

Регуляция антитоксической функции печени

Стимуляция эритропоэза

Регуляция деятельности ЦНС.

Витамин B5 — Пантотеновая кислота
Пантотеновая кислота входит в состав важнейшего метаболита — кофермента А и некоторых пептидных коферментов, принимая участие в ключевых реакциях обмена аминокислот, углеводов и липидов. Кофермент А присутствует во всех клетках и связан с реакциями ацетилирования и образованием ацетоуксусной, лимонном и щавелевой кислот, эфиров, амидов и углеводных цепочек. Витамин выступает в качестве переносчика ацетила- в составе комплекса ацетил-коэнзима А, КОТОРЫЙ НЕОБХОдим для биосинтеза жирных кислот, фосфолипидов, холестерина и ряда стероидных гормонов.

Пантотенол играет важную роль в процессах роста, поддерживает устойчивость слизистых оболочек к инфекции, нормализует обменные процессы в коже и других эпителиальных тканях. Он участвует в процессах регенерации эпителия, способствует заживлению ран и эпителизации, ускоряет рост и пигментацию волос.

Обмен углеводов: снижение гипергликемии после нагрузки сахаром

Обмен белка: участие в синтезе пептидов и белков

Обмен липидов: участия в биосинтезе и гидролизе жиров, участие в биосинтезе жирных кислот, фосфолипидов, холестерина

Эндокринная функция: синергизм между действием пантотенола и тироксина, предотвращение токсического действия тироксина, участие в синтезе стероидных гормонов надпочечников, предотвращение надпочечниковой недостаточности.

Витамин В6 — Пиридоксин
Пиридоксин играет ключевую роль в обмене аминокислот, необходим дня синтеза биогенных аминов в ЦНС. Он играет важную роль в обмене углеводов при высвобождении глюкозы из гликогена (гликогенфосфорилаза). Пиридоксин влияет на превращение триптофана в ниацин, биосинтез порфиринов, гемоглобина, регулирует некоторые функции нервной системы, иммунитет.

Наследственные пиридоксальфосфат-зависимые ферментопатии

Алкогольная интоксикация

Атонический дерматит, стероидзависимая астма

Сахарный диабет: снижает содержание глюкозы, преодоление плохого гликемического контроля, диабетическая периферическая нейропатия

Гипертония: уменьшает артериальное давление

Депрессия — уменьшает симптомы депрессии

Предменструальный синдром — снижение выраженности клинических симптомов.

Витамин В12 — Кобаламин
Метилкобаламин участвует в синтезе метионина из гомоцистеина в митохондриях (этот процесс может быть связан с присутствием фолатов). Он играет роль в преобразовании фолиевой кислоты в ее активную форму, необходимую для процесса кроветворения. Аденозилкобаламин регулирует процессы деградации некоторых жирных кислот и аминокислот. Своим участием в биосинтезе пуриновых и пиримидиновых оснований, витамин В12 регулирует обмен нуклеиновых кислот и белков.


Витамин С — Аскорбиновая кислота

Аскорбиновая кислота является высокоэффективным восстановителем и принимает участие во многих окислительно-восстановительных реакциях. Реакции гидроксилирования являются ключевыми в инактивации токсических веществ и лекарств.

В качестве антиоксиданта аскорбиновая кислота участвует в антиокислительных защитных механизмов клеток, направленных против содержащих кислород свободных радикалов, с которыми связывают различные повреждения клеток и макромолекул, сердечно-сосудистые заболевания, рак, возрастные изменения.

Источник