Йодное число рыбьего жира
Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. |
Рыбий (в частности, тресковый) жир — животный жир, содержащийся в рыбе и получаемый из рыбы — например, из большой, весом в 1,3—2,2 кг, трёхлопастной жирной печени трески[1]. В большом количестве содержится в морской рыбе холодных вод мирового океана — в скумбрии, сельди, других жирных рыбах.
История[править | править код]
Рекламное объявление
(Тулуза, 1914 год)
Рыбий жир использовался для приготовления пищи с давних пор. Ибн-Фадлан (арабский путешественник и писатель 1-й половины X века), побывавший с посольством в восточной Европе писал в своём отчёте «Рисала», представляющим собой ценный источник описания быта и политических отношений огузов, башкир, булгар, русов и хазар: «И у них нет ни (оливкового) масла, ни масла сезама, ни жира совершенно, и действительно, они употребляют вместо этих жиров рыбий жир, и всё, что они с ним (этим жиром) употребляют, бывает сильно пахнущим»[2].
Североамериканские индейцы и другие коренные народы многие столетия употребляли рыбий жир в пищу. Более 150 лет назад в Норвегии его стали использовать для лечебных и профилактических целей. В середине XIX в. фармацевт Петер Мёллер (норв. Peter Möller, 1793 —1869) обнаружил, что жители западного побережья Норвегии, которые постоянно употребляли в пищу масло печени трески, отличались более крепким здоровьем. Он разработал метод производства масла из свежей печени норвежской трески[3][4], наладил продажу рыбьего жира, использовавшегося до этого в основном для выделки кож.
Сорта[править | править код]
По способу приготовления и по виду, в торговле различаются главным образом три сорта рыбьего жира: белый, жёлтый и бурый:
- бурый — обладающий неприятным запахом и вкусом, применяется исключительно для технических целей (для изготовления смазочных материалов, при обработке кож, для изготовления деграса и проч.).
- жёлтый — иногда применяется в медицине, но только в очищенном виде.
- белый — применяется в медицине и для приёма внутрь.
Добыча[править | править код]
Производство рыбьего жира ведётся преимущественно двумя способами:
Норвежская паровая установка для приготовления рыбьего жира
- Первый способ, фабричный, состоит в том, что свежепойманную треску тотчас же вскрывают, вырезают печень, отделяют от неё желчный пузырь и патологически изменённые части, если таковые имеются, тщательно обмывают водой и складывают в большой котёл с двойными стенками для нагревания его водяным паром и иногда с приспособлением для замены в котле воздуха углекислым газом. Сложенную в котле чистую печень для получения рыбьего жира лучшего качества нагревают не выше 50 °C; выступающий из печени под влиянием этой температуры и давления самой печени жир вычерпывают из котла и отстаивают при температуре около 0 °C, в Норвегии же часто при −5 °C; не застывшую, прозрачную, слегка желтоватую часть сливают и она идёт в торговлю под названием белого рыбьего жира. Оставшуюся в котле печень нагревают затем сильнее при слабом сдавливании и таким путём получают другой сорт рыбьего жира, так называемый красный или жёлтый рыбий жир. При дальнейшем нагревании и выжимании получаются уже бурые сорта, идущие в технику.
- Второй способ, как более простой, более доступен отдельным рыбакам, не имеющим возможности сейчас же перерабатывать свой ежедневный улов; состоит он в том, что менее тщательно очищенную печень складывают в бочки, которые по наполнении заколачиваются. Такие бочки, по окончании улова, то есть недели через 3-4, привозятся домой и вскрываются; в них уже имеется сам собой вытекший жир тёмно-оранжевого цвета, не вполне прозрачный, с довольно резким запахом и горьковатым рыбным привкусом; реакция его всегда кислая. Такой жир употребляется под названием красного рыбьего жира. Оставшуюся печень вываривают с водой и получают бурые сорта жира. Для получения 1 кг жира требуется от 2 до 6 печёнок трески. Большая хорошая печень трески весит около 2 кг и дает около 0,25 кг белого жира; красного получается почти в 4 раза больше.
Добыча трескового жира производится главным образом в Норвегии.
Другой страной, где производство рыбьего жира достигло больших размеров и особого высокого технического совершенства, являются США, где центром этой промышленности служит штат Род-Айленд. Здесь на жиротопление идет массово вылавливаемая американская сельдь. Пойманная кошельковым неводом рыба доставляется на пароходах к пристани жиротопных заводов, где устроен элеватор (на принципе черпаков), посредством которого улов в тысячи пудов весьма быстро вычерпывается из парохода, поднимается на верхний этаж, где поступает в камеры с проведённым в них паром. Обваренная паром масса рыбы переходит затем в громадные гидравлические прессы, которые могут за 10 часов выжать жир из 200—300 тыс. рыбин; отжатый жир собирается и очищается, а жмых идёт на гуано (англ. fish guano).
Состав и свойства[править | править код]
Обыкновенно употребляемый рыбий жир представляет густоватую жидкость светло-жёлтого или красноватого цвета, по виду (консистенции) подобную растительным жирным маслам, но отличающуюся характерным более или менее слабым рыбным запахом (обусловленным клупанодоновой кислотой[5]) и таким же вкусом; удельный вес около 0,925; реакция нейтральная, чаще слабокислая; в остальном рыбий жир повторяет свойства большинства жирных масел[6].
По химическому составу рыбий жир представляет смесь глицеридов, главным образом олеиновой кислоты С18Н34О2 (более 70 %), затем пальмитиновой С16Н32О2 (около 25 %), полиненасыщенных жирных кислот группы омега-6 (линолевой порядка 2 %, арахидоновой 2—3 %) и омега-3 (эйкозапентаеновой 6—10 %, докозагексаеновой 10—15 %, докозапентаеновой 2—5 %), малых количеств стеариновой C18H36O2 (порядка 1—2 %)[7] и совсем незначительных — уксусной, масляной, валериановой, каприновой и некоторых других; кроме того, в рыбьем жире заключается от 0,3 до 0,6 % холестерина (одноатомного спирта С27Н45OH.H2O), равно как ничтожные количества особого, характерного, краснеющего от серной кислоты пигмента липохрома; далее найдены ничтожные количества йода (0,002—0,04 %), брома, фосфора (до 0,02 %) и серы в виде органических соединений и, наконец, незначительное количество азотистых производных, как-то: аммиак NH3, триметиламин N(СН3)3, бутиламин NC4H11, два ещё хорошо не исследованных птомаина: морруин C19H27N3, по количеству третья часть всех оснований, оказывающий на организм пото- и мочегонное влияние, и азеллин С25Н32N4, ядовитый птомаин, придающий воде, с которой взболтано масло, горький вкус, и морруиновая (оксидигидропиридинмасляная) кислота C9H13NO3 (около 0,2 %), оказавшаяся идентичной выделенному при перегонке жира и описанному раньше «гадуину».
В зависимости от состава, рыбий жир обладает следующими характерными свойствами: при смешении нескольких капель его с каплей серной кислоты образуются кольца, окрашенные в синий цвет, переходящий в фиолетовый, красный и, наконец, бурый; реакция эта характерна для рыбьего жира и зависит от присутствия холестерина и липохрома (а не желчных пигментов, как думали раньше); элаидиновая проба даёт результат отрицательный, что позволяет открыть подмесь растительных невысыхающих масел; йодное число (Гюбля) около 130, что позволяет открыть подмесь высыхающих растительных масел. Кроме того, характерно для рыбьего жира, что он весьма легко поддаётся окислению, легче даже льняного масла и весьма легко эмульгируется. В зависимости от этих двух свойств, быть может, и находится наибольшая всасываемость его и проникание через поры клеточных мембран и наибольшая из всех жиров усвояемость его организмом.[8]
Применение в производстве в XIX веке[править | править код]
Главное потребление американского жира — на кожевенных заводах, в красильном деле, заменяя растительные масла (льняное и др.), освещение в рудниках и приготовление мыла.
Размеры жиротопления из американской сельди в Северной Америке следующие: 97 заводов действовало в 1882 году, добыто более 2 млн галлонов рыбьего жира и около 69 000 тонн рыбного гуано. К 1894—1895 годам число заводов сократилось до 50, производством занималось 3400 человек, улов определяется в 500 млн рыб. Из приведённых цифр отношения ценности производства жиротопления видно, что рыбное гуано, составляющее отброс жиротопления, превышает ценность собственно жира; гуано вывозится из Америки в Германию, преимущественно для удобрения виноградников — в нём 3—7 % аммиака, 10—13 % фосфорной кислоты и 4—7 % калия. В Индии значительное количество жира добывается из сельди (Cl. Neohawii) и акул.
В Калининградской области на жиротопление идёт более никуда не годная и весьма вредная для других рыб мелкая рыбка — колюшка (завод в Калининграде), в других регионах Российской Федерации главным объектом жиротопления служат внутренности и отбросы от разделки рыбы. Особо высокого качества жир получается из внутренностей судака — почти бесцветный и без запаха. Его употребляют для ожирения сухой паюсной икры, а также в пищу — при жарке рыбы. Однако промышленного характера жиротопление в русском рыбном промысле теперь не имеет, тогда как ранее, когда астраханская сельдь и минога шли исключительно на жиротопление, производство жира определялось в 1,6—4 млн кг ежегодно.[9]
Рыбий жир в СССР[править | править код]
Советские учёные выдвинули гипотезу о недостатке полиненасыщенных жирных кислот в пище, после чего правительство страны организовало масштабные профилактические меры. В школах и детских садах было введено обязательное принятие рыбьего жира, который принимался детьми в жидкой форме. Это продолжалось до выхода указа о запрете рыбьего жира в 1970 году[источник не указан 399 дней], причиной которого стало загрязнение морей. Указ был отменён в 1997 году.
Применение в медицине[править | править код]
Основная ценность жиров рыб — это содержание в них полиненасыщенных жирных кислот (ПНЖК) группы ω-3, препятствующих развитию сердечно-сосудистых заболеваний. Это связано с тем, что холестерин в присутствии ПНЖК образует т. н. «нормальные» эфиры, легко переносимые по кровеносным сосудам. Кроме того, ω-3 ПНЖК снижают риск инсулиноустойчивости и диабета, необходимы при образовании клеточных мембран, нитей митохондрий, миелиновой оболочки нервов, соединительных тканей.[10] Однако, современные исследования показывают, что у пациентов с сахарным диабетом без сопутствующих кардиоваскулярных заболеваний, длительное применение омега-3 ПНЖК не приводит к снижению риска серьезных сосудистых событий[11].
Медицинский рыбий жир в капсулах
В медицине различают два сорта: очищенный, светло-жёлтый и неочищенный, буровато-жёлтый. Первый добывается фабричным способом. Фабричному сорту рыбьего жира, ввиду отсутствия в нём резкого запаха и вкуса, отдают предпочтение перед различными сортами рыбьего жира, приготовленного примитивными способами, так как такие препараты, не будучи в достаточной мере очищены от посторонних примесей и продуктов разложившейся печени, нередко ведут к расстройству пищеварения и поэтому не могут назначаться более или менее продолжительное время.
Врачебное значение рыбьего жира зависит почти исключительно от содержащихся в препарате жиров; другие составные части, как йод, бром, фосфор, желчные пигменты и соли, находятся в столь незначительных количествах, что не могут проявить присущего им терапевтического действия. Этим можно объяснить, почему освобождённый от жиров морруол не нашёл применения во врачебной практике. Рыбий жир в эмульсии распадается, в сравнении с другими жирами, на более мелкие частички и поэтому легче других жиров всасывается; экспериментально доказано также, что препарат легче других жиров проникает через поры клеточных мембран и быстрее окисляется. Растительные масла гораздо труднее диффундируют через поры клеточных мембран. Хотя присутствие желчных кислот в тёмных сортах рыбьего жира, по-видимому, должно бы способствовать более быстрому всасыванию таких препаратов, но разница в этом отношении настолько незначительна, что она не может изменить вышеприведённого взгляда относительно врачебного значения очищенного и неочищенного рыбьего жира. Препарат этот можно вводить в организм в относительно больших количествах, по 15,0—30,0 мл несколько раз в день, и сравнительно продолжительное время.
Назначение рыбьего жира имеет целью поднятие общего питания, так как лёгкая окисляемость препарата способствует сбережению азотистого материала, идущего на построение тканей. Поэтому рыбий жир назначается при рахите, при анемии, при истощении после тяжёлых заболеваний, против куриной слепоты (против последнего заболевания рыбий жир некоторыми врачами признается специфическим средством). Так как самые лучшие сорта рыбьего жира в жаркое время трудно предохранить от прогорклости, то обыкновенно препарат предпочтительно назначают в более холодное время года. Встречаются больные, которые не переносят рыбьего жира. При употреблении рыбьего жира на голодный желудок скорее могут появиться расстройства пищеварительного аппарата. При катаральных заболеваниях желудка и кишок назначение рыбьего жира может ещё более ухудшить и без того ненормальное состояние пищеварительных органов. То же следует иметь в виду при лихорадочных заболеваниях. Дети обычно привыкают к рыбьему жиру, если им после приёма дают съесть корочку чёрного хлеба. Нередко рыбий жир назначается вместе с другими врачебными средствами, например с йодом, железом, креозотом, но такие комбинации не представляют каких-либо преимуществ перед отдельными приёмами каждого медикамента.
Также рыбий жир содержит витамин A и витамин D и исторически стал применяться именно из-за способности витамина D предотвратить рахиты и другие симптомы, возникающие вследствие его недостатка.
Перед покупкой рыбьего жира покупателям советуют внимательно изучать состав на наличие в нём необходимых элементов — к примеру, на содержание в нём эйкозапентаеновой (EPA) и докозагексаеновой кислот (DHA). Стремясь сделать продукт более дешёвым, производители зачастую снижают количество активных ингредиентов. Несмотря на упоминание на упаковке рыбьего жира про то, что для покрытия суточной нормы нужно будет принимать сразу несколько капсул, покупатели не обязательно обратят на это внимание. Также покупателям советуют помнить о том, что суточной нормой является потребление примерно 1 г Омега-3 в сутки в виде этих самих EPA и DHA[12]. К тому же диетологи и специалисты по вопросам питания напоминают покупателям, что рыбий жир — это биологически активная добавка к пище, которая отнюдь не представляет собой лекарственное средство.
См. также[править | править код]
- Ворвань
- Рыбное масло
Примечания[править | править код]
- ↑ Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ Ибн-Фадлан. «Записка» о путешествии на Волгу. www.hist.msu.ru. Дата обращения 12 декабря 2018.
- ↑ Колупаева Е. А., Беляева Л. М. Современный взгляд на рыбий жир // Медицинские новости. — 2013. — № 10. — С. 40-41.
- ↑ World class processing of Möller’s omega 3 products. web.archive.org (16 октября 2016). Дата обращения 12 декабря 2018.
- ↑ Сабатье П., Катализ в органической химии, 1932, с. 235.
- ↑ Бородин Н. А., Гинзберг А. С., Каменский Д. А., Менделеев Д. И. Рыбий жир // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Ф. М. Ржавская. Жиры рыб и морских млекопитающих[прояснить]
- ↑ А. С. Гинзберг, Д. И. Менделеев.[прояснить]
- ↑ G. Brown Goode, «The fisheries and fishery industries of the United States» (1887, s. V, v. I); «U. S. Fish Commissioners report for 1895» (Вашингтон, 1896); H. Бородин, «Рыболовный отдел на всемирной выставке в Чикаго» (СПб., 1894); Simmonds, «The commercial products of the sea» (Л., 1883); Беш, «Промыслы y Лафотенских островов» (СПб., 1897).
- ↑ С. Ю. Дубровин[прояснить]
- ↑ Bowman L, Mafham M, Stevens W, et al. ASCEND: A Study of Cardiovascular Events iN Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15,480 people with diabetes. European Society of Cardiology (ESC) Congress 2018.
- ↑ Суточная норма Омега-3. Как принимать рыбий жир?. FitSeven. FitSeven (12 мая 2011).
Литература[править | править код]
- Жир рыбий // Товарный словарь / И. А. Пугачёв (главный редактор). — М.: Государственное издательство торговой литературы, 1957. — Т. II. — Стб. 835—837 — 567 с.
- Бородин Н. А., Гинзберг А. С., Каменский Д. А., Менделеев Д. И. Рыбий жир // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Браун К. Масла и жиры / Под ред. Д. Н. Артемьева. — Наука и жизнь, 1924. — С. 17—20. — (Русское издание «Библиотеки Гешен»).
- Сабатье П. Катализ в органической химии / Под ред. и с доп. Н. А. Орлова и А. Д. Петрова. — Л.: Госхимтехиздат, 1932. — 418 с.
Ссылки[править | править код]
- Капица П. Л. Рыбий жир.
- Рыбий жир — статья из Большой советской энциклопедии.
Источник
ОКС 67.200.10
Предисловие
1 ПОДГОТОВЛЕН ОАО «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС»), Государственным научным учреждением «Всероссийский научно-исследовательский институт жиров Российской академии сельскохозяйственных наук» (ГНУ «ВНИИЖ Россельхозакадемии») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом стандартизации ТК 238 «Масла растительные и продукты их переработки»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. N 705-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 3961:2009* «Жиры и масла животные и растительные. Определение йодного числа» (ISO 3961:2009 «Animal and vegetable fats and oils — Determination of iodine value», IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.
Сведения о соответствии ссылочных международных стандартов национальным стандартам и действующим в этом качестве международным стандартам приведены в дополнительном приложении ДA
5 ВВЕДЕН ВПЕРВЫЕ
6 ПЕРЕИЗДАНИЕ. Октябрь 2019 г.
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
1 Область применения
Настоящий стандарт устанавливает метод определения йодного числа животных и растительных жиров и масел (далее — жиры).
Приложение A описывает метод расчета йодного числа, исходя из жирно-кислотного состава. Данный метод неприменим к рыбьему жиру.
Примечание — Метод, приведенный в приложении A, основан на AOCS Recommended Practice Cd 1c-85 [1].
________________
Американское общество химиков-жировиков.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ISO 661, Animal and vegetable fats and oils — Preparation of test sample (Жиры и масла животные и растительные. Подготовка пробы для испытания)
ISO 3696, Water for analytical laboratory use — Specifications and test methods (Вода для лабораторного анализа. Технические требования и методы испытаний)
3 Термины и определения
В настоящем стандарте применен следующий термин с соответствующим определением:
3.1 йодное число (iodine value, IV), : Масса галогена в пересчете на йод, поглощенная пробой в условиях стандартизованной процедуры, деленная на массу пробы.
Примечание — Йодное число выражают в граммах на 100 г жира.
4 Сущность метода
Пробу растворяют в растворителе и добавляют реактив Вийса. По истечении установленного интервала времени добавляют йодид калия и воду, затем выделившийся йод титруют раствором тиосульфата натрия.
Примечание — Приложение A описывает метод расчета йодного числа исходя из жирно-кислотного состава. Однако этот метод не является ускоренным. Данный метод дает два результата на основе одной аналитической процедуры. Титриметрический метод является арбитражным.
5 Реактивы
Используют реактивы только пригодной для анализа степени чистоты и воду в соответствии с ИСО 3696, степень чистоты 3.
ПРЕДУПРЕЖДЕНИЕ — Следует соблюдать все правила обращения с опасными веществами. Необходимо принимать меры технической, организационной и личной безопасности.
5.1 Калия йодид, раствор концентрацией 100 г/дм, не содержащий йодатов или свободного йода.
5.2 Раствор крахмала: смешивают 5 г растворимого крахмала с 30 см воды и добавляют к 1000 см кипящей воды. Кипятят в течение 3 мин и дают охладиться. Ежедневно готовят свежий раствор крахмала.
5.3 Натрия тиосульфат, стандартный раствор для титрования, концентрацией =0,1 моль/дм, уточненной не более чем за семь дней до использования.
5.4 Растворитель, приготовленный смешиванием 50 см циклогексана и 50 см безводной уксусной кислоты.
5.5 Реактив Вийса, содержащий монохлорид йода в уксусной кислоте. Соотношение I/Cl в реактиве Вийса должно быть в пределах (1,1±0,1).
Следует использовать готовый реактив Вийса. Следует соблюдать срок годности данного реактива.
6 Оборудование
Используют обычное лабораторное оборудование и, в частности, приведенное ниже.
6.1 Ложечки стеклянные, пригодные для взвешивания пробы и для помещения в колбы (см. 6.2).
6.2 Конические колбы вместимостью 500 см со шлифованными стеклянными пробками.
6.3 Весы аналитические, позволяющие взвешивать с точностью ±0,001 г.
6.4 Колба мерная вместимостью 1000 см по [2], класс A.
6.5 Пипетка вместимостью 25 см, автоматическая или по [3], класс A, оснащенная грушей для всасывания.
7 Отбор проб
Лабораторией должна быть получена представительная проба. Она не должна быть повреждена или изменена в процессе транспортирования или хранения.
Отбор проб не является частью метода, устанавливаемого в настоящем стандарте. Рекомендуемый метод отбора проб — по [4].
8 Подготовка испытуемой пробы
Испытуемую пробу готовят в соответствии с методом, приведенным в ИСО 661.
9 Выполнение определения
9.1 Анализируемая проба и приготовление холостого раствора
9.1.1 В зависимости от ожидаемого йодного числа испытуемую пробу взвешивают с точностью 0,001 г в стеклянной ложечке для взвешивания (см. 6.1), массой, указанной в таблице 1.
Таблица 1
Ожидаемое йодное число , г/100 г | Масса порции пробы , г | Объем растворителя , см | ||
<1,5 | 15,00 | 25 | ||
1,5<2,5 | 10,00 | 25 | ||
2,5<5 | 3,00 | 20 | ||
5<20 | 1,00 | 20 | ||
20<50 | 0,40 | 20 | ||
50<100 | 0,20 | 20 | ||
100<150 | 0,13 | 20 | ||
150<200 | 0,10 | 20 | ||
Примечание — Масса пробы должна быть такой, чтобы имелся избыток реактива Вийса в количестве от 50% до 60% добавляемого количества, т.е. от 100% до 150% прореагировавшего количества. |
9.2 Определение
9.2.1 Стеклянную ложечку, содержащую пробу, помещают в коническую колбу вместимостью 500 см (см. 6.2) и добавляют объем растворителя (см. 5.4), указанный в таблице 1. Добавляют 25,00 см реактива Вийса (см. 5.5) при помощи пипетки (см. 6.5). Закрывают колбу пробкой, перемешивают содержимое круговыми движениями и помещают колбу в темное место.
Примечание — Ложечка остается в колбе.
ПРЕДУПРЕЖДЕНИЕ — Недопустимо засасывать реактив в пипетку ртом.
9.2.2 Готовят холостой раствор, используя растворитель и реактив, как это описано в 9.2.1, без внесения пробы.
9.2.3 В случае проб, имеющих йодное число менее 150, колбы выдерживают в темноте в течение 1 ч.
В случае проб с йодным числом более 150, а также полимеризованных продуктов и масел, содержащих жирные кислоты с сопряженными двойными связями (таких как тунговое масло, дегидратированное касторовое масло), любых масел, содержащих жирные кетокислоты (таких как некоторые сорта гидрогенизированного касторового масла), и продуктов со значительной степенью окисления колбы выдерживают в темноте в течение 2 ч.
9.2.4 По окончании реакции (см. 9.2.3) добавляют 20 см йодида калия (см. 5.1) и 150 см воды.
Содержимое колбы титруют стандартным раствором тиосульфата натрия (см. 5.3) до тех пор, пока обусловленная йодом желтая окраска практически не исчезнет. Добавляют несколько капель раствора крахмала (5.2) и продолжают титрование, пока не исчезнет синяя окраска сразу после очень энергичного встряхивания. Отмечают объем раствора тиосульфата натрия , пошедший на титрование. Возможно также потенциометрическое титрование.
9.2.5 Проводят определение, используя при этом холостой раствор (см. 9.2.2). В холостом определении (см. 9.2.4) регистрируют объем раствора тиосульфата натрия, пошедший на титрование, .
10 Обработка результатов
Йодное число , г/100 г жира, рассчитывают по формуле
,
где — концентрация раствора тиосульфата натрия (см. 5.3), моль/дм;
— объем раствора тиосульфата натрия, используемый в холостом определении, см;
— объем раствора тиосульфата натрия, пошедший на титрование, см;
— масса пробы, г.
Результат округляют, как это указано в таблице 2.
Таблица 2
Йодное число , г/100 г | Округление |
<20 | До 0,1 |
20<60 | До 0,5 |
60 | До 1 |
11 Прецизионность
11.1 Общие положения
Приведенные значения могут быть неприменимы к диапазонам концентраций и матрицам, отличным от приведенных.
11.2 Сходимость
Абсолютное расхождение между двумя независимыми результатами испытаний, полученными с использованием одного и того же метода применительно к идентичному испытуемому материалу в той же лаборатории, одним и тем же оператором с использованием одного и того же оборудования в течение короткого периода времени, должно быть не более, чем значения , приведенные в таблице 3.
11.3 Воспроизводимость
Абсолютное расхождение между двумя независимыми результатами испытаний, полученными с использованием одного и того же метода применительно к идентичному испытуемому материалу в различных лабораториях, различными операторами с использованием различного оборудования, должно быть не более, чем значения , приведенные в таблице 3.
Таблица 3
Йодное число , г/100 г | Предел сходимости | Предел воспроизводимости |
<20 | 0,2 | 0,7 |
20<50 | 1,3 | 3,0 |
50<100 | 2,0 | 3,0 |
100<135 | 3,5 | 5,0 |
Приложение A (справочное). Метод расчета значения йодного числа
Приложение A
(справочное)
A.1 Общие положения
Данное приложение описывает метод расчета йодного числа пищевых масел исходя из жирно-кислотного состава, определяемого газовой хроматографией метиловых эфиров жирных кислот. Он применим к триглицеридам и свободным жирным кислотам, а также к продуктам их гидрогенизации. Для масел с содержанием неомыляемых веществ, превышающим 0,5% (например, для рыбьего жира), расчеты часто дают заниженные значения и, таким образом, не применяются.
ПРЕДУПРЕЖДЕНИЕ — Хотя данная процедура и дает значение йодного числа, она не является ускоренным методом. Данный метод дает два результата на основе одного анализа.
А.2 Процедура
А.2.1 Определяют жирно-кислотный состав масла или смеси жирных кислот.
А.2.2 Рассчитывают значения йодного числа группы компонентов, как это описано в А.2.2.1 и А.2.2.2.
Примечание — Расчеты часто дают заниженные значения для продуктов с низкими значениями йодного числа.
А.2.2.1 Триглицериды
Значение йодного числа для триглицеридов , рассчитывают по формуле
.
А.2.2.2 Свободные жирные кислоты
Значение йодного числа для свободных жирных кислот рассчитывают по формуле
,
где — массовая доля гексадеценовой кислоты, %;
— массовая доля октадеценовой кислоты, %;
— массовая доля октадекадиеновой кислоты, %;
— массовая доля октадекатриеновой кислоты, %;
— массовая доля эйкозеновой кислоты, %;
— массовая доля докозеновой кислоты, %.
Нижние индексы в формате обозначают число атомов углерода в молекуле , за которым следует количество двойных связей .
Рассчитанные значения йодного числа, полученные на основе газохроматографического (ГХ) определения жирно-кислотного состава нетриглицеридных жировых продуктов, таких как неполные эфиры глицерина, неполные эфиры сорбитола/сорбитана/изосорбида, неполные эфиры полиоксиэтилена сорбитола/сорбитана/изосорбида или глицерина, представляют собой рассчитанные значения йодного числа только жирных кислот, используемых для приготовления неполных эфиров. Для получения истинных значений йодного числа неполных эфиров нежирных кислот и многоатомных спиртов, оказывающих разбавляющий эффект, необходимо использовать метод определения йодного числа с хлорированным реактивом Вийса. Значения йодного числа неполных эфиров, полученные при использовании метода Вийса, меньше, чем значения, полученные при помощи ГХ, из-за разбавляющего эффекта многоатомного спирта.
Приложение ДA (справочное). Сведения о соответствии ссылочных международных стандартов национальным стандартами действующим в этом качестве международным стандартам
Приложение ДA
(справочное)
Таблица ДA.1
Обозначение ссылочного международного стандарта | Степень соответствия | Обозначение и наименование соответствующего национального стандарта |
ISO 661:2003 | — | * |
ISO 3696:1987 | MOD | ГОСТ Р 52501-2005 «Вода для лабораторного анализа. Технические условия» |
* Соответствующий национальный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта. Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов: — MOD — модифицированный стандарт. |
Библиография
[1] | Рекомендуемая практика AOCS, Cd 1c-85 Йодное число, рассчитанное на основе ГЖХ | |
[2] | ИСО 1042:1998 | Посуда лабораторная стеклянная. Мерные колбы с одной меткой |
[3] | ИСО 648:2008 | Посуда лабораторная стеклянная. Пипетки с одной меткой |
[4] | ИСО 5555:2001 | Жиры и масла животные и растительные. Отбор проб |
УДК 636.087.07:006.354 | ОКС 67.200.10 |
Ключевые слова: жиры, масла животные и растительные, йодное число, реактив Вийса, триглицериды, жирные кислоты |
Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
официальное издание
М.: Стандартинформ, 2019
Источник